DOI QR코드

DOI QR Code

Analysis and Application of Compact Planar Multi-Loop Self-Resonant Coil of High Quality Factor with Coaxial Cross Section

고품질 계수를 갖는 소형 평판형 동축 단면 다중 루프 자기 공진 코일 해석 및 응용

  • Son, Hyeon-Chang (Samsung Electronics) ;
  • Kim, Jinwook (Power Electrical Equipment Information and Communication Eng., University of Science & Technology(UST), Korea Electrotechnology Research Institute(KERI)) ;
  • Kim, Do-Hyeon (Power Electrical Equipment Information and Communication Eng., University of Science & Technology(UST), Korea Electrotechnology Research Institute(KERI)) ;
  • Kim, Kwan-Ho (Power Electrical Equipment Information and Communication Eng., University of Science & Technology(UST), Korea Electrotechnology Research Institute(KERI)) ;
  • Park, Young-Jin (Power Electrical Equipment Information and Communication Eng., University of Science & Technology(UST), Korea Electrotechnology Research Institute(KERI))
  • 손현창 (삼성전자) ;
  • 김진욱 (과학기술연합대학원대학교 전력정보통신공학과, 한국전기연구원) ;
  • 김도현 (과학기술연합대학원대학교 전력정보통신공학과, 한국전기연구원) ;
  • 김관호 (과학기술연합대학원대학교 전력정보통신공학과, 한국전기연구원) ;
  • 박영진 (과학기술연합대학원대학교 전력정보통신공학과, 한국전기연구원)
  • Received : 2013.01.04
  • Accepted : 2013.02.13
  • Published : 2013.04.30

Abstract

In this paper, a compact planar multi-loop self-resonant coil of high quality factor with a coaxial cross section is proposed for effective wireless charging. The proposed coil has high Q-factor and a resonant frequency of a coil can be easily controlled by adjusting distributed capacitance. For designing the coil, a self-inductance and a distributed capacitance are calculated theoretically. The self-inductance is calculated from the sum of the mutual energies between small circular loops that are made by dividing the cross section of the coil. To verify its properties and calculation results, the self-resonant coils are fabricated by using a coaxial cable with characteristic impedance of $50{\Omega}$. The measured frequencies are very consistent with the calculated ones. In addition, the resonant frequency can be adjusted slightly by the tuning parameter ${\gamma}$. The resonant coils are applied to a tablet PC, the Q-factors of the Tx and Rx resonant coils are 282 and 135, respectively. As a result of measurement when height between the two resonant coils is 4.4 cm, the power transfer efficiency is more than 80 % within a radius of 5 cm.

본 논문에서는 무선 충전에 사용할 수 있는 동축 단면의 도선을 이용한 소형 평판형 다중 루프 자기 공진 코일을 제시한다. 제안한 공진 코일은 높은 품질 계수를 갖고, 분포 커패시턴스를 조절하여 쉽게 공진 주파수를 제어할 수 있다. 공진 코일의 설계를 위해 제안한 공진 코일의 자기 인덕턴스 및 분포 커패시턴스 값을 이론적으로 계산하였다. 자기 인덕턴스는 단면 분할법을 사용하여 분할된 단면 사이의 상호 에너지의 합으로 계산할 수 있다. 검증을 위해, 특성 임피던스 $50{\Omega}$ 동축선으로 공진 코일을 제작하였다. 측정된 공진 주파수는 계산된 공진 주파수와 거의 일치하였고, 튜닝 파라미터 ${\gamma}$를 조절하여 원하는 공진 주파수로 조절할 수 있었다. 제작한 공진 코일을 태블릿 PC에 적용한 결과, 송 수전부 공진 코일의 품질 계수는 각각 282, 135를 가졌다. 공진 코일 사이의 간격이 4.4 cm인 경우, 송전부 공진 코일의 반경 5 cm 이내에서 80 % 이상의 전력 전송 효율을 얻을 수 있었다.

Keywords

References

  1. A. Kurs, A. Karalis, R. Moffatt, J. D. Joannopoulos, P. Fisher, and M. Soliacic, "Wireless power transfer via strongly coupled magnetic resonance", Science, vol. 317, pp. 83-86, Jun. 2007. https://doi.org/10.1126/science.1143254
  2. J. Kim, H. -C. Son, K. -H. Kim, and Y. -J. Park, "Efficiency analysis of magnetic resonance wireless power transfer with intermediate resonant coil", IEEE Antennas and Wireless Propagation Letters, vol. 10, pp. 389-392, May 2011. https://doi.org/10.1109/LAWP.2011.2150192
  3. X. Liu, S. Y. Hui, "Optimal design of a hybrid winding structure for planar contactless battery charging platform", IEEE Transactions on Power Electronics, vol. 23, no. 1, pp. 455-463, Jan. 2008. https://doi.org/10.1109/TPEL.2007.911844
  4. Y. Yao, H. Zhang, and Z. Geng, "Wireless charger prototype based on strong coupled magnetic resonance", 2011 International Conference on Electronic & Mechanical Engineering and Information Technology, vol. 5, pp. 2252-2254, Aug. 2011.
  5. A. P. Sample, D. T. Meyer, and J. R. Smith, "Analysis, experimental results, and range adaptation of magnetically coupled resonators for wireless power transfer", IEEE Transactions on Industrial Electronics, vol. 58, no. 2, pp. 544-554, Feb. 2011. https://doi.org/10.1109/TIE.2010.2046002
  6. J. Kim, H. -C. Son, D. -H. Kim, J. -R. Yang, K. -H. Kim, K. -M. Lee, and Y. -J. Park, "Wireless power transfer for free positioning using compact planar multiple self-resonators", IEEE MTT-S International Microwave Workshop Series on Innovative Wireless Power Transmission 2012, pp. 127-130, May 2012.
  7. M. Dionigi, M. Mongiardo, "A novel coaxial loop resonator for wireless power transfer", International Journal of RF and Microwave Competer-Aided Engineering, vol. 22, no. 3, pp 345-352, May 2012. https://doi.org/10.1002/mmce.20603
  8. D. K. Cheng, Field and Wave Electromagnetics, 2nd Ed., Addison Wesley, pp. 277-278, 1989.
  9. K. -B. Kim, E. Levi, Z. Zabar, and L. Birenbaum, "Mutual inductance of noncoaxial circular coils with constant current density", IEEE Transactions on Magnetics, vol. 33, no. 5, pp. 3916-3921, Sep. 1997. https://doi.org/10.1109/20.619614
  10. R. H. Good, "Elliptic integrals, the forgotten functions", European Journal of Physics, vol. 22, pp. 119-126, 2001. https://doi.org/10.1088/0143-0807/22/2/303
  11. F. W. Grover, Inductance Calculations, New York: Dover, pp. 143, 1964.
  12. D. M. Pozar, Microwave Engineering, 3rd Ed., John Wiley & Sons, Inc., 2005.
  13. A. Karalis, "Novel photonic phenomena in nanostructured material systems with applications and mid-range efficient insensitive wireless energy-transfer", Doctoral dissertation in MIT, 2008.