DOI QR코드

DOI QR Code

MIMO Circular Polarization Feed Network for Communication Performance Improvement of Land Mobile Satellite System

육상 이동 위성 시스템의 통신 성능 향상을 위한 MIMO 원형 편파 급전 네트워크

  • 한정훈 (한국과학기술원 전기 및 전자공학과) ;
  • 명로훈 (한국과학기술원 전기 및 전자공학과)
  • Received : 2013.01.04
  • Accepted : 2013.02.28
  • Published : 2013.04.30

Abstract

In this paper, we propose the MIMO circular polarization feed network to enhance the communication performances from the previous $2{\times}2$ MIMO channel to $4{\times}4$ channel for Land Mobile Satellite communication system. The only possibility to extend the communication channel is to use the additional satellite because of the limitation of satellite spaces to install additional antennas. For overcoming this problems, we propose the MIMO circular polarization feed network to secure the isolation characteristics without the distant antenna space. The port isolation characteristics and each port impedance matching conditions are numerically verified and we suggest the $4{\times}4$ MIMO channel model of the proposed system and the performances are verified. The fabricated circular polarization patch antennas with the proposed feed network are measured in the reverberation chamber and 7~10 dB of diversity gain and 80 % increasement of channel capacity are obtained.

본 논문은 육상 이동 위성(Land Mobile Satellite: LMS) 시스템의 통신 성능 향상을 위해 기존의 $2{\times}2$ MIMO 채널에서 $4{\times}4$ 채널로 확장할 수 있는 MIMO 원형 편파 급전 네트워크를 제안한다. 기존의 추가적인 통신 채널 확보를 위해서는 위성국에서 안테나 설치 공간상의 제약이 있기 때문에 이격 거리가 충분한 추가 위성국을 필요로 한다. 이로 인한 비용 및 MIMO 통신 채널의 한계 문제를 극복하기 위하여, 동일한 원형 편파 간에 이격 거리가 없이도 높은 격리성을 확보할 수 있는 MIMO 원형 편파 급전 네트워크를 제안하였다. 제안하는 급전 네트워크의 포트간 격리성과 각 포트의 매칭 상태를 수식적으로 증명하였고, $4{\times}4$ MIMO 채널의 통신 성능 향상을 채널 모델 측면에서 제시 및 확인하였다. MIMO 원형 편파 급전 네트워크를 원형 편파 패치 안테나 구조로 실제 제작하고 측정하여 7~10 dB의 다이버시티 이득을 얻었고, 약 1.8배로 채널 용량이 향상되었음을 확인하였다.

Keywords

References

  1. J. Winters, "On the capacity of radio communication systems with diversity in a Rayleigh fading environment", IEEE Journal on Selected Areas in Communications, vol. 5, no. 5, pp. 871-878, Jun. 1987. https://doi.org/10.1109/JSAC.1987.1146600
  2. M. F. B. Mansor, T. W. C. Brown, and B. G. Evans, "Satellite MIMO measurement with colocated quadrifilar helix antennas at the receiver terminal", IEEE Antennas and Wireless Propagation Letters, vol. 9, pp. 712-715, 2010. https://doi.org/10.1109/LAWP.2010.2058990
  3. R. G. Vaughan, "Polarization diversity in mobile communications", IEEE Transactions on Vehicular Technology, vol. 39, no. 3, pp. 177-186, Aug. 1990. https://doi.org/10.1109/25.130998
  4. P. D. Arapoglou, K. Liolis, M. Bertinelli, A. Panagopoulos, P. Cottis, and D. R. Gaudenzi, "MIMO over satellite: A review", IEEE Communications. Surveys and Tutorials, vol. 13, no. 1, pp. 27-51, First Quater 2011. https://doi.org/10.1109/SURV.2011.033110.00072
  5. D. M. Pozar, Microwave Engineering, Wiley, 1998.
  6. W. I. Son, W. G. Lim, M. Q. Lee, S. B. Min, and J. W. Yu, "Design of compact quadruple inverted-F antenna with circular polarization for GPS receiver", IEEE Transactions on Antennas and Propagation, vol. 58, no. 5, pp. 1503-1510, May 2010. https://doi.org/10.1109/TAP.2010.2044344
  7. D. Tse, P. Viswanath, Fundamentals of Wireless Communication, 1st Ed., New York, NY: Cambridge Univ. Press, 2005.
  8. U. M. Ekpe, T. W. C. Brown, and B. G. Evans, "Channel characteristics analysis of the dual circular polarized land mobile satellite MIMO radio channel", 2011 IEEE-APS Topical Conference on Antennas and Propagation in Wireless Communications (APWC), pp. 781-784, Sep. 2011.
  9. P. R. King, S. Stavrou, "Characteristics of the land mobile satellite MIMO channel", 2006 IEEE 64th Vehicular Technology Conference, pp. 1-4, Sep. 2006.
  10. K. P. Liolis, J. Gomez-Vilardebo, E. Casini, and A. I. Perez-Neira, "Statistical modeling of dual-polarized MIMO land mobile satellite channels", IEEE Tras. on Comm., vol. 58, no. 11, pp. 3077-3083, Nov. 2010. https://doi.org/10.1109/TCOMM.2010.091710.090507
  11. P. S. Kildal, K. Rosengren, H. Byun, and J. Lee, "Definition of effective diversity gain and how to measure it in a reverberation chamber", Microwave and Optical Technology Letters, vol. 34, no. 1, pp. 56-59, May 2002. https://doi.org/10.1002/mop.10372
  12. M. F. B. Mansor, T. W. C. Brown, and B. G. Evans, "Satellite MIMO measurement with colocated quadrifilar Helix antennas at the receiver terminal", IEEE Antennas and Wireless Propagation Letters, vol. 9, pp. 712-715, 2010. https://doi.org/10.1109/LAWP.2010.2058990
  13. P. S. Kildal, K. Rosengren, "Electromagnetic analysis of effective and apparent diversity gain of two parallel dipoles", IEEE Antennas and Wireless Propagation Letters, vol. 2, pp. 9-13, 2003. https://doi.org/10.1109/LAWP.2003.810768
  14. S. Blanch, J. Romeu, and I. Corbella, "Exact representation of antenna system diversity performance from input parameter description", Electronics Letters, vol. 39, no. 9, pp. 705-707, May. 2003. https://doi.org/10.1049/el:20030495