DOI QR코드

DOI QR Code

극저온 환경에서 에폭시 접착제의 물성 향상을 위한 나노 보강재의 표면 개질에 관한 연구

The Effect of the Core-shell Structured Meta-aramid/Epoxy Nanofiber Mats on Interfacial Bonding Strength with an Epoxy Adhesive in Cryogenic Environments

  • 오현주 (전북대학교 유기소재파이버공학과 대학원) ;
  • 김성수 (전북대학교 유기소재파이버공학과)
  • 투고 : 2012.12.12
  • 심사 : 2013.02.12
  • 발행 : 2013.04.30

초록

극저온 환경에 노출되는 구조체의 접착조인트의 경우 피접착물과 접착물 사이에서 열팽창계수 차이로 인해 계면에서 잔류응력이 발생하게 되는데 이에 의해 접착조인트 내부에 미소균열, 층간분리 등의 형태로 파손이 발생할 우려가 있다. 본 연구에서는 높은 비강성, 낮은 열팽창계수의 특성을 지닌 메타 아라미드 섬유를 에폭시 기지재의 보강재로 사용하였다. 표면처리 공정을 간소화하기 위해 전기방사법의 고분자 혼합법(polymer blend method)으로 코어-쉘 구조의 메타 아라미드/에폭시 나노섬유를 제조하였다. 극저온 환경에서 계면특성이 향상된 코어-쉘 구조의 나노섬유를 보강한 에폭시 접착제의 전단물성을 확인하기 위해 환경챔버를 이용하여 $-150^{\circ}C$의 저온에서 단일 겹치기 실험(single lap joint test)을 진행하였다. 또한, DCB(double cantilever beam) 실험을 통해 파괴인성을 측정하였다. 그 결과, 극저온에서 일반 메타 아라미드 나노섬유에 비해 코어-쉘 구조의 메타 아라미드/에폭시 나노섬유를 보강한 접착제 시편이 우수한 계면특성으로 인해 물성이 크게 향상되었음을 확인하였다.

The strength of adhesive joints employed in composite structures under cryogenic environments, such as LNG tanks, is affected by thermal residual stress generated from the large temperature difference between the bonding process and the operating temperature. Aramid fibers are noted for their low coefficient of thermal expansion (CTE) and have been used to control the CTE of thermosetting resins. However, aramid composites exhibit poor adhesion between the fibers and the resin because the aramid fibers are chemically inert and contain insufficient functional groups. In this work, electrospun meta-aramid nanofiber-reinforced epoxy adhesive was fabricated to improve the interfacial bonding between the adhesive and the fibers under cryogenic temperatures. The CTE of the nanofiber-reinforced adhesives were measured, and the effect on the adhesion strength was investigated at single-lap joints under cryogenic temperatures. The fracture toughness of the adhesive joints was measured using a Double Cantilever Beam (DCB) test.

키워드

참고문헌

  1. Lee, S.J., and Lee, D.G., "Development of the Failure Model for the Adhesive Bonded Tubular Single Lap Joint," Vol. 5, No. 1, 1992. pp, 27-36.
  2. Zhai, L.L., Ling, G.P., and Wang, Y.W., "Effect of Nano-$Al_{2}O_{3}$ on Adhesion Strength of Epoxy Adhesive and Steel," Journal of Adhesion and Adhesives, Vol. 28, No. 1-2, 2008, pp. 23-28. https://doi.org/10.1016/j.ijadhadh.2007.03.005
  3. Martiny, P., Lani, F., Kinloch, A.J., and Pardoen, T., "A Multiscale Parametric Study of Mode I Fracture in Metal-tometal Low-toughness Adhesive Joints," International journal of Fracture, Vol. 173, No. 2, 2012, pp. 105-133 https://doi.org/10.1007/s10704-011-9667-x
  4. Sancaktar, E., and Kumar, S., "Selective Use of Rubber Toughening to Optimize Lap-joint Strength," Journal of Adhesion Science and Technology, Vol. 14, No. 10, 2000, pp. 1265-1296. https://doi.org/10.1163/156856100742195
  5. Park, S.W., and Lee, D.G., "Strength of Double Lap Joints Bonded with Carbon Black Reinforced Adhesive under Cryogenic Environment," Journal of Adhesion Science and Technology, Vol. 23, No. 4, 2009, pp. 619-638. https://doi.org/10.1163/156856108X386959
  6. Kalantar, J., and Drazal, L.T., "The Bonding Machanism of Aramid Fibres to Epoxy Matrixs," Journal of Materials Science, Vol. 25, No. 10, 1990, pp. 4186-4193. https://doi.org/10.1007/BF00581071
  7. Kim, J.G., Choi, I.B., Lee, D.G., and Seo, I.S., "Flame and Silane Treatments for Improving the Adhesive Bonding Characteristics of Aramid_epoxy Composites," Composite Structure, Vol. 93, No. 11, 2011, pp. 2696-2705. https://doi.org/10.1016/j.compstruct.2011.06.002
  8. Li, D., and Xia, Y., "Electrospinning of Nanofibers: Reinventing the Wheel?," Advanced Materials, Vol. 16, No. 14, 2004, pp. 1151-1170. https://doi.org/10.1002/adma.200400719
  9. Lin, S., Cai, Q., Ji, J., Sui, G., Yu, Y., Yang, X., Mab, Q., Wei, Y., and Deng, X., "Electrospun Nanofiber Reinforced and Toughened Composites Through in situ Nano-interface Formation," Composites Science and Technology, Vol. 68, No. 15-16, 2008, pp. 3322-3329. https://doi.org/10.1016/j.compscitech.2008.08.033
  10. King, F.W., Du Pont Company, US Patent 3,079,219, 1960.
  11. Adams, D.F., Experimental Characterization of Advanced Composite Materials, CRC Press, Boca Raton, 2002.

피인용 문헌

  1. Evaluation of Fracture Behavior of Adhesive Layer in Fiber Metal Laminates using Cohesive Zone Models vol.29, pp.2, 2016, https://doi.org/10.7234/composres.2016.29.2.045