References
- Kim, D.H., Hwang, W.B., Park, H.C., and Lee, K.H, "Superhydrophobic Engineered Surface Based on Nanohoneycomb Structures," Journal of the Korean Society for Composite Materials, Vol. 20, No. 2, 2007, pp. 17-20.
- Yamakov, V., Wolf, D., Phillpot, S.R., Mukherjee, A.K., and Gleiter, H., "Dislocation Processes in the Deformation of Nanocrystalline Aluminium by Molecular-dynamics Simulation," Nature Materials, Vol. 1, 2001, pp. 45-49.
- Ruan, S., and Schuh, C.A., "Electrodeposited Al-Mn Alloys with Microcrystalline, Nanocrystalline, Amorphous and Nanoquasicrystalline Structures," Acta Materialia, Vol. 57, 2009, pp. 3810-3822. https://doi.org/10.1016/j.actamat.2009.04.030
- Niendorf, T., Maier, H.J., Canadinc, D., Yapici, G.G., and Karaman, I., "Improvement of the Fatigue Performance of an Ultrafinegrained Nb-Zr Alloy by Nano-sized Precipitates Formed by Internal Oxidation," Scripta Materialia, Vol. 58, 2008, pp. 571-574. https://doi.org/10.1016/j.scriptamat.2007.11.015
- Lee, K.H., Ju, J.U., and Choi, N.S., "Acoustic Emission Characteristics and Fracture Behaviors of GFRP-Aluminum Honeycomb Hybrid Laminates under Compressive and Bending Loads," Journal of Composite Materials, Vol. 22, No. 6, 2009, pp. 23-31.
- Bakshi, S.R., Singh, V., Seal, S., and Agarwal, A., "Aluminum Composite Reinforced with Multiwalled Carbon Nanotubes from Plasma Spraying of Spray Dried Powders," Surface Coating Technology, Vol. 203, 2009, pp. 1544-1554. https://doi.org/10.1016/j.surfcoat.2008.12.004
- Bakshi, S.R., Singh, V., Balani, K., McCartney, D.G., Seal, S., and Agarwal, A., "Carbon Nanotube Reinforced Aluminum Composite Coating via Cold Spraying," Surface Coating Technology, Vol. 202, 2008, pp. 5162-5169. https://doi.org/10.1016/j.surfcoat.2008.05.042
- Goh, C.S., Wei, J., Lee, L.C., and Gupta, M., "Ductility Improvement and Fatigue Studies in Mg-CNT Nanocomposites," Composite Science and Technology, Vol. 68, 2008, pp. 1432-1439. https://doi.org/10.1016/j.compscitech.2007.10.057
- Choi, H.J., Kwon, G.B., Lee, G.Y., and Bae, D.H., "Reinforcement with Carbon Nanotubes in Aluminum Matrix Composites," Scripta Materialia, Vol. 59, 2008, pp. 360-363. https://doi.org/10.1016/j.scriptamat.2008.04.006
- Esawi, A.M.K., Morsi, K., Sayed, A., Abdel, G.A., and Borah, P., "Fabrication and Properties of Dispersed Carbon Nanotubealuminum Composites," Materials Science and Engineering A, Vol. 508, 2009, pp. 167-173. https://doi.org/10.1016/j.msea.2009.01.002
- Kwon, H., Estili, M., Takagi, K., Miyazaki, T., and Kawasaki, A., "Combination of Hot Extrusion and Spark Plasma Sintering for Producing Carbon Nanotube Aluminium Matrix Composites," Carbon, Vol. 47, 2008, pp. 570-577.
- Morsi, K., Esawi, A.M.K., Lanka, S., Sayed, A., and Taher, M., "Spark Plasma Extrusion (SPE) of Ball-milled Aluminium and Carbon Nanotube Reinforced Aluminium Composite Powders," Composites Part A: Applied Science and Manufacturing, Vol. 41, 2010, pp. 322-326. https://doi.org/10.1016/j.compositesa.2009.09.028
- Lim, D.K., Shibayanagi, T., and Gerlich, A.P., "Synthesis of Multi-walled CNT Reinforced Aluminium Alloy Composite via Friction Stir Processing," Materials Science and Engineering A, Vol. 507, 2009, pp.194-199. https://doi.org/10.1016/j.msea.2008.11.067
- Klug, H.P., and Alexander LE., X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials, John Wiley & Sons, London, UK, 1954.
- Choi, H.J., Lee, S.W., Park, J.S., and Bae, D.H., "Tensile Behavior of Bulk Nanocrystalline Aluminum Synthesized by Hot Extrusion of Ball-milled Powders," Scripta Materialia, Vol. 59, 2008, pp. 1123-1126. https://doi.org/10.1016/j.scriptamat.2008.07.030
- Courtney, T.H., Mechanical Behavior of Materials, McGraw-Hill Book Co., Singapore, 2000.
- Choi, H.J., Shin, J.H., and Bae, D.H., "Grain Size Effect on the Strengthening Behavior of Aluminum-based Composites Containing Multi-walled Carbon Nanotubes," Composites Science and Technology, Vol. 71, 2011, pp. 1699-1705. https://doi.org/10.1016/j.compscitech.2011.07.013
Cited by
- Influence of high-pressure torsion and hot rolling on the microstructure and mechanical properties of aluminum–fullerene composites vol.52, pp.20, 2017, https://doi.org/10.1007/s10853-017-1230-3
- Microscopic analysis of metal matrix composites containing carbon Nanomaterials vol.50, pp.None, 2013, https://doi.org/10.1186/s42649-019-0024-2
- Nanostructured Strain-Hardened Aluminum-Magnesium Alloys Modified by C60 Fullerene Obtained by Powder Metallurgy: 2. The Effect of Magnesium Concentration on Physical and Mechanical Properties vol.62, pp.3, 2013, https://doi.org/10.3103/s1067821221030081