DOI QR코드

DOI QR Code

Mechanical Behavior of Al/C60-fullerenes Nanocomposites

풀러렌이 분산된 알루미늄기지 나노복합재의 기계적 거동

  • 최현주 (국민대학교 신소재공학부)
  • Received : 2012.12.05
  • Accepted : 2013.02.04
  • Published : 2013.04.30

Abstract

Aluminum-based composites containing $C_{60}$-fullerenes are produced by hot rolling of ball-milled powder. The grain size of aluminum is effectively reduced to ~100 nm during ball-milling processes, leading to grain refinement strengthening of the composite. Furthermore, $C_{60}$-fullerenes are gradually dispersed during ball-milling processes and hence the strength of the composite increases with the volume of $C_{60}$-fullerenes. The composite containing 10 vol% $C_{60}$-fullerenes with a grain size of ~ 100 nm exhibits ~1 GPa of compressive strength.

$C_{60}$ 풀러렌이 분산된 알루미늄기지 복합재를 볼 밀링법과 열간압연 공정을 이용하여 제조하였다. 볼 밀링이 진행되는 동안, 알루미늄기지는 그 결정립이 100 nm 이하 수준으로 미세화되어 강화되었다. 동시에 $C_{60}$ 풀러렌이 알루미늄기지 내에 균일하게 분산되어, $C_{60}$ 풀러렌의 첨가량이 증가할수록 복합재의 강도가 증가하였으며, 10 vol%의 $C_{60}$ 풀러렌을 포함하는 순 알루미늄기지 복합재는 1 GPa 수준의 압축 강도를 나타내었다.

Keywords

References

  1. Kim, D.H., Hwang, W.B., Park, H.C., and Lee, K.H, "Superhydrophobic Engineered Surface Based on Nanohoneycomb Structures," Journal of the Korean Society for Composite Materials, Vol. 20, No. 2, 2007, pp. 17-20.
  2. Yamakov, V., Wolf, D., Phillpot, S.R., Mukherjee, A.K., and Gleiter, H., "Dislocation Processes in the Deformation of Nanocrystalline Aluminium by Molecular-dynamics Simulation," Nature Materials, Vol. 1, 2001, pp. 45-49.
  3. Ruan, S., and Schuh, C.A., "Electrodeposited Al-Mn Alloys with Microcrystalline, Nanocrystalline, Amorphous and Nanoquasicrystalline Structures," Acta Materialia, Vol. 57, 2009, pp. 3810-3822. https://doi.org/10.1016/j.actamat.2009.04.030
  4. Niendorf, T., Maier, H.J., Canadinc, D., Yapici, G.G., and Karaman, I., "Improvement of the Fatigue Performance of an Ultrafinegrained Nb-Zr Alloy by Nano-sized Precipitates Formed by Internal Oxidation," Scripta Materialia, Vol. 58, 2008, pp. 571-574. https://doi.org/10.1016/j.scriptamat.2007.11.015
  5. Lee, K.H., Ju, J.U., and Choi, N.S., "Acoustic Emission Characteristics and Fracture Behaviors of GFRP-Aluminum Honeycomb Hybrid Laminates under Compressive and Bending Loads," Journal of Composite Materials, Vol. 22, No. 6, 2009, pp. 23-31.
  6. Bakshi, S.R., Singh, V., Seal, S., and Agarwal, A., "Aluminum Composite Reinforced with Multiwalled Carbon Nanotubes from Plasma Spraying of Spray Dried Powders," Surface Coating Technology, Vol. 203, 2009, pp. 1544-1554. https://doi.org/10.1016/j.surfcoat.2008.12.004
  7. Bakshi, S.R., Singh, V., Balani, K., McCartney, D.G., Seal, S., and Agarwal, A., "Carbon Nanotube Reinforced Aluminum Composite Coating via Cold Spraying," Surface Coating Technology, Vol. 202, 2008, pp. 5162-5169. https://doi.org/10.1016/j.surfcoat.2008.05.042
  8. Goh, C.S., Wei, J., Lee, L.C., and Gupta, M., "Ductility Improvement and Fatigue Studies in Mg-CNT Nanocomposites," Composite Science and Technology, Vol. 68, 2008, pp. 1432-1439. https://doi.org/10.1016/j.compscitech.2007.10.057
  9. Choi, H.J., Kwon, G.B., Lee, G.Y., and Bae, D.H., "Reinforcement with Carbon Nanotubes in Aluminum Matrix Composites," Scripta Materialia, Vol. 59, 2008, pp. 360-363. https://doi.org/10.1016/j.scriptamat.2008.04.006
  10. Esawi, A.M.K., Morsi, K., Sayed, A., Abdel, G.A., and Borah, P., "Fabrication and Properties of Dispersed Carbon Nanotubealuminum Composites," Materials Science and Engineering A, Vol. 508, 2009, pp. 167-173. https://doi.org/10.1016/j.msea.2009.01.002
  11. Kwon, H., Estili, M., Takagi, K., Miyazaki, T., and Kawasaki, A., "Combination of Hot Extrusion and Spark Plasma Sintering for Producing Carbon Nanotube Aluminium Matrix Composites," Carbon, Vol. 47, 2008, pp. 570-577.
  12. Morsi, K., Esawi, A.M.K., Lanka, S., Sayed, A., and Taher, M., "Spark Plasma Extrusion (SPE) of Ball-milled Aluminium and Carbon Nanotube Reinforced Aluminium Composite Powders," Composites Part A: Applied Science and Manufacturing, Vol. 41, 2010, pp. 322-326. https://doi.org/10.1016/j.compositesa.2009.09.028
  13. Lim, D.K., Shibayanagi, T., and Gerlich, A.P., "Synthesis of Multi-walled CNT Reinforced Aluminium Alloy Composite via Friction Stir Processing," Materials Science and Engineering A, Vol. 507, 2009, pp.194-199. https://doi.org/10.1016/j.msea.2008.11.067
  14. Klug, H.P., and Alexander LE., X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials, John Wiley & Sons, London, UK, 1954.
  15. Choi, H.J., Lee, S.W., Park, J.S., and Bae, D.H., "Tensile Behavior of Bulk Nanocrystalline Aluminum Synthesized by Hot Extrusion of Ball-milled Powders," Scripta Materialia, Vol. 59, 2008, pp. 1123-1126. https://doi.org/10.1016/j.scriptamat.2008.07.030
  16. Courtney, T.H., Mechanical Behavior of Materials, McGraw-Hill Book Co., Singapore, 2000.
  17. Choi, H.J., Shin, J.H., and Bae, D.H., "Grain Size Effect on the Strengthening Behavior of Aluminum-based Composites Containing Multi-walled Carbon Nanotubes," Composites Science and Technology, Vol. 71, 2011, pp. 1699-1705. https://doi.org/10.1016/j.compscitech.2011.07.013

Cited by

  1. Influence of high-pressure torsion and hot rolling on the microstructure and mechanical properties of aluminum–fullerene composites vol.52, pp.20, 2017, https://doi.org/10.1007/s10853-017-1230-3
  2. Microscopic analysis of metal matrix composites containing carbon Nanomaterials vol.50, pp.None, 2013, https://doi.org/10.1186/s42649-019-0024-2
  3. Nanostructured Strain-Hardened Aluminum-Magnesium Alloys Modified by C60 Fullerene Obtained by Powder Metallurgy: 2. The Effect of Magnesium Concentration on Physical and Mechanical Properties vol.62, pp.3, 2013, https://doi.org/10.3103/s1067821221030081