DOI QR코드

DOI QR Code

시계열 모형을 이용한 일별 최대 전력 수요 예측 연구

Daily Peak Load Forecasting for Electricity Demand by Time series Models

  • 이정순 (중앙대학교 응용통계학과) ;
  • 손흥구 (중앙대학교 응용통계학과) ;
  • 김삼용 (중앙대학교 응용통계학과)
  • Lee, Jeong-Soon (Department of Applied Statistics, Chung-Ang University) ;
  • Sohn, H.G. (Department of Applied Statistics, Chung-Ang University) ;
  • Kim, S. (Department of Applied Statistics, Chung-Ang University)
  • 투고 : 2013.02.26
  • 심사 : 2013.04.05
  • 발행 : 2013.04.30

초록

최근 일별 최대 전력수요 예측은 전력설비 계획 및 운용에 매우 중요한 사안으로 주목받고 있다. 본 연구는 일별 최대 전력수요 예측을 위하여 대표적 시계열 모형을 소개하고, 예측의 성능 비교를 위하여 RMSE(Root mean squared error)와 MAPE(Mean absolute percentage error)를 사용한다. 연구결과로 보완된 Holt-Winters 모형과 Reg-ARIMA 모형이 다른 모형에 비하여 우수한 예측 성능을 보였다.

Forecasting the daily peak load for electricity demand is an important issue for future power plants and power management. We first introduce several time series models to predict the peak load for electricity demand and then compare the performance of models under the RMSE(root mean squared error) and MAPE(mean absolute percentage error) criteria.

키워드

참고문헌

  1. Amjady, N. (2001). Short-Term Hourly Load Forecasting Using Time-Series Modeling with Peak Load Estimation Capability, IEEE Transactions on Power Systems, 16, 498-505. https://doi.org/10.1109/59.932287
  2. Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity, Journal of Econometrics, 31, 307-327. https://doi.org/10.1016/0304-4076(86)90063-1
  3. Box, G.E.P. and Jenkins, G.M.(1994)., Time Series Analysis, Forecasting and Control, Prentice Hall.
  4. Engle, R. F. (1982). Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom in ation, Econometrica: Journal of the Econometric Society, 50, 987-1007. https://doi.org/10.2307/1912773
  5. McSharry, P. E., Bouwman, S. and Bloemhof, G. (2005). Probabilistic forecasts of the magnitude and timing of peak electricity demand, IEEE Transactions on Power Systems, 20, 1166-1172. https://doi.org/10.1109/TPWRS.2005.846071
  6. Ramanathan, R., Engle, R., Granger, C. W. J., Vahid-Araghi, F. and Brace, C. (1997). Short-run forecasts of electricity loads and peaks, International Journal of Forecasting, 13, 161-174. https://doi.org/10.1016/S0169-2070(97)00015-0
  7. Sohn, S. Y. and Lim, M. (2005). Hierarchical forecasting based on AR-GARCH model in a coherent structure European, Journal of Operational Research, 176, 1033-1040.
  8. Taylor, J. W. (2003). Short-term electricity demand forecasting using double seasonal exponential smoothing, Journal of the Operational Research Society, 54, 799-805. https://doi.org/10.1057/palgrave.jors.2601589
  9. Taylor, J. W. (2010). Triple seasonal methods for short-term electricity demand foreca-sting, European Journal of Operational Research, 204, 139-152. https://doi.org/10.1016/j.ejor.2009.10.003
  10. Taylor, J. W. and Buizza, R. (2003). Using weather ensemble predictions in electricity demand forecasting, International Journal of Forecasting, 19, 57-70. https://doi.org/10.1016/S0169-2070(01)00123-6
  11. Weron, R. (2006). Modeling and Forecasting Electricity Loads and Prices: A Statistical Approach, Wiley, Chichester.
  12. Winters, P. R. (1960). Forecasting sales by exponentially weighted moving averages, Management Science, 6, 324-342. https://doi.org/10.1287/mnsc.6.3.324

피인용 문헌

  1. Re-Transformation of Power Transformation for ARMA(p, q) Model - Simulation Study vol.28, pp.3, 2015, https://doi.org/10.5351/KJAS.2015.28.3.511
  2. A study on electricity demand forecasting based on time series clustering in smart grid vol.29, pp.1, 2016, https://doi.org/10.5351/KJAS.2016.29.1.193
  3. Forecasting Passenger Transport Demand Using Seasonal ARIMA Model - Focused on Joongang Line vol.17, pp.4, 2014, https://doi.org/10.7782/JKSR.2014.17.4.307
  4. Development of Daily Peak Power Demand Forecasting Algorithm Considering of Characteristics of Day of Week vol.63, pp.4, 2014, https://doi.org/10.5370/KIEEP.2014.63.4.307
  5. Electricity Demand Forecasting for Daily Peak Load with Seasonality and Temperature Effects vol.27, pp.5, 2014, https://doi.org/10.5351/KJAS.2014.27.5.843
  6. Load Forecasting and ESS Scheduling Considering the Load Pattern of Building vol.65, pp.9, 2016, https://doi.org/10.5370/KIEE.2016.65.9.1486
  7. Prediction of Electricity Sales by Time Series Modelling vol.27, pp.3, 2014, https://doi.org/10.5351/KJAS.2014.27.3.419
  8. Load Forecasting using Hierarchical Clustering Method for Building vol.64, pp.1, 2015, https://doi.org/10.5370/KIEE.2015.64.1.041
  9. The effect of temperature on the electricity demand: An empirical investigation vol.24, pp.2, 2015, https://doi.org/10.5855/ENERGY.2015.24.2.167