참고문헌
- Goldenberg, A. A. and Bezerghi, A., 1985, "A Preview Approach to Force Control of Robot Manipulators," Mechanism and Machine Theory, Vol. 20, No. 5, pp. 449-464. https://doi.org/10.1016/0094-114X(85)90049-7
- White, F. M., 1974, Viscous Fluid Flow, McGraw- Hill, New York, pp. 163-189.
- Suh, S. H., Choi, Y., Roh, H. W. and Doh, H., 1999, "Flow Analysis in the Bifurcated Duct with PIV System and Computer Simulation," Trans. Korean Soc. Mech. Eng. B, Vol. 23, No. 1, pp. 123-180.
- Hiatt, E. P., Mecchan, J. P. and Galambos, 1969 "Reports on Human Acceleration," National Academy of Sciences-National Research Council, Washington D. C, Publication 901.
- Zeng, D., Ding, Z., Friedman, M. H. and Ethier, C. R., 2003, "Effects of Cardiac Motion on Right Coronary Artery Hemodynamics," Annals of Biomedical Engineering, Vol. 31 No. 4, pp. 420-429. https://doi.org/10.1114/1.1560631
- Ramaswamy, S. D., Vigmostad, S. C., Wahle, A., Lai, Y. G., Olszewski, M. E., Braddy, K. C., Brennan, T. M. H., Rossen, J. D., Sonka, M. and Chandran, K. B. , 2004, "Fluid Dynamic Analysis in a Human Left Anterior Descending Coronary Artery with Arterial Motion," Annals of Biomedical Engineering, Vol. 32, No. 12, pp. 1628-1641. https://doi.org/10.1007/s10439-004-7816-3
- Sud, V. K. and Sekhon, G. S., 1985, "Arterial Flow under Periodic Body Acceleration," Bulletin of Mathematical Biology, Vol. 47, No. 1, pp. 35-52. https://doi.org/10.1007/BF02459645
- Sud, V. K. and Sekhon, G. S., 1986, "Analysis of Blood Flow through a Model of the Human Arterial System under Periodic Body Acceleration," Journal of Biomechanics, Vol. 19, No. 11, pp. 929-941. https://doi.org/10.1016/0021-9290(86)90188-0
- Misra, J. C. and Sahu, B. K., 1988, "Flow Through Blood Vessels under the Action of a Periodic Acceleration Field. A Mathematical Analysis," Computers & Mathematics with Applications, Vol. 16, No. 12, pp. 857-867.
- Mandal, P. K., Chakravarty, S., Mandal, A. and Amin, N., 2007, "Effect of Body Acceleration on Unsteady Pulsatile Flow of Non-Newtonian Fluid Through a Stenosed Artery," Applied Mathematics and Computation, Vol. 189, No, 1. pp. 766-779. https://doi.org/10.1016/j.amc.2006.11.139
- Ro, K. C., Lee, S. H., Cho, S. W. and Ryou, H. S., 2008, "Numerical Study on Blood Flow Characteristics of the Stenosed Blood Vessel with Periodic Acceleration and Rotating Effect," Springer Proceedings in Physics Series Vo. 124, pp. 77-83. https://doi.org/10.1007/978-3-540-85190-5_7
- Imao, S. Itoh, M., Yamada, Y. and Zhang, Q., 1992, "The Characteristics of Spiral Waves in an Axially Rotating Pipe," Experiments in Fluids, Vol. 12, No. 4- 5, pp. 277-285.
- Kikuyama, K., Murakami, M., Nishibori, K. and Maeda, K., 1983, Flow in an Axially Rotating Pipe: A Calculation of Flow in the Saturated Region, Bulletin of the JSME, Vol. 26, No, 214, pp. 506-513. https://doi.org/10.1299/jsme1958.26.506
- Chien, S., 1982, "Hemorheology in Clinical Medicine," Clinical Hemorheology, Vol. 2, pp. 137-142.
- Sung, K. H., Ro, K. C. and Ryou, H. S., 2009, "Numerical Investigation on the Blood Flow Characteristics Considering the Axial Rotation in Stenosed Artery," Korea-Australia Rheology Journal, Vol. 21, no. 2, pp. 119-126.
- Bella J. N., Roman, M. J., Pini, R., Schwartz, J. E., Pickering, T. G. and Devereux, R. B., 1999, "Assessment of Arterial Compliance by Carotid Midwall Strain-Stress Relation in Normotensive Adults," Hypertension, Vol. 33, pp. 787-792. https://doi.org/10.1161/01.HYP.33.3.787
- Hsu, M. C. and Bazilevs, Y., 2011, "Blood Vessel Tissue Prestress Modeling for Vascular Fluid-Structure Interaction Simulation," Finite Element in Analysis and Design, Vol. 47, No. 6, pp. 593-599. https://doi.org/10.1016/j.finel.2010.12.015
- Torii, R., Oshima, M., Kobayashi, T., Takagi, K. and Tezduyar, T. E., 2011, "Influencing Factors in Imagebased Fluid-Structure Interaction Computation of Cerebral Aneurysms," International Journal for Numerical Methods in Fluids, Vol. 65, No. 1-3, pp. 324-340. https://doi.org/10.1002/fld.2448
- Caro, C. G., Pedley, T. J., Schroter, R. C., Seed, W. A., 2011, "The Mechanics of the Circulation," Cambridge University Press, London, p.550.
- Perktold. K. and Rappitsch, G., 1995, "Computer Simulation of Local Blood Flow and Vessel Mechanics In a Compliant Carotid Artery Bifurcation Model," Journal of Biomechanics, Vol. 28, no. 7, pp. 845-856. https://doi.org/10.1016/0021-9290(95)95273-8
- Zhao, S. Z., Ariff, B., Long, Q., Heghes, A. D., Thom, S. A., Stanton, A. V. and Xu, X. Y., 2002, Inter- Individual Variations in Wall Shear Stress and Mechanical Stress Distributions at the Carotid Artery Bifurcation of Healthy Humans," Journal of Biomechanics, Vol. 35, No. 10, pp. 1367-1377. https://doi.org/10.1016/S0021-9290(02)00185-9
- Tada S. and Tarbell, J. M., 2005, "A Computational Study of Flow in a Compliant Carotid Bifurcation- Stress Phase Angle Correlation with Shear Stress," Annals of Biomedical Engineering, Vol. 33, No. 9, pp. 1202-1212. https://doi.org/10.1007/s10439-005-5630-1
- Tang, D., Yang, C., Zheng, J., Woodard, P. K., Sicard, G. A., Saffitz, J. E. and Yuan, C., 2004, "3D MRI-Based Multicomponent FSI Models for Atherosclerotic Plaques," Annals of Biomedical Engineering, Vol. 32, no. 7, pp. 947-960. https://doi.org/10.1023/B:ABME.0000032457.10191.e0
- Gao, H. and Long, Q., 2008, "Effects of Varied Lipid Core Volume and Fibrous Cap Thickness on Stress Distribution in Carotid Arterial Plaques," Journal of Biomechanics, Vol. 41, No. 14, pp. 3053-3059. https://doi.org/10.1016/j.jbiomech.2008.07.011
- Salzer R. S., Thubrikar, M. J. and Eppink, R. T. ,1995, "Pressure Induced Mechanical Stress in the Carotid Artery Bifurcation: A Possible Correlation to Atherosclerosis," Journal of Biomechanics, Vol. 28, No.11, pp. 1333-1340. https://doi.org/10.1016/0021-9290(95)00005-3
- Cho, Y. I., Back, L. H. and Crawford, D. W., 1985, "Experimental Investigation of Branch Flow Ratio, Angle, and Reynolds Number Effects on the Pressure and Flow Fields in Arterial Branch Models," Journal of Biomechanical Engineering-Transactions of the ASME, Vol. 107, No. 3, pp. 257-267. https://doi.org/10.1115/1.3138551
- Bathe, K. J. and Zhang, H., 2004, "Finite Element Developments for General Fluid Flows with Structural Interactions," International Journal for Numerical Methods in Engineering, Vol. 60, No.1, pp. 213-232. https://doi.org/10.1002/nme.959
-
Gijsen, F. J. H, Allanic, E., van de Vosse, F. N. and Janssen, J. D., 1999, "The Influence of The Non- Newtonian Properties of Blood on the Flow in Large Arteries: Unsteady Flow in a
$90^{\circ}$ Curved Tube," Journal of Biomechanics, Vol. 32, No. 6, pp. 601-608. https://doi.org/10.1016/S0021-9290(99)00015-9 - Luo, J. Y., Issa, R. I. and Gosman, A. D., 1994, "Prediction of Impeller Induced Flows in Mixing Vessels using Multiple Frames of Reference," IChemE Symposium Series, Vol. 136, pp. 549-556.
- Olgac, U., Poulikakos, D., Saur, S. C., Alkadhi, H. and Kurtcuoglu, V., 2009, "Patient-Specific Three- Dimensional Simulation of LDL Accumulation in a Humna Left Coronary Artery in It's Healthy and Atherosclerotic States," American Journal of Physiology-Heart and Circulatory Physiology, Vol. 296, No. 6, pp. 1969-1982. https://doi.org/10.1152/ajpheart.01182.2008
- Knight, J., Olgac, U., Saur, S. C., Poulikakos, D., Marshall, W Jr., Cattin, P. C., Alkadhi, H. and Kurtcuoglu, V., 2010, "Choosing the Optimal Wall Shear Parameter for the Prediction of Plaque Location- A Patient-Specific Computational Study in Human Right Coronary Arteries," Atherosclerosis, Vol. 211, No. 2, pp. 445-450. https://doi.org/10.1016/j.atherosclerosis.2010.03.001
- Leach, J. R., Rayz, V. L., Morfad, M. R. K. and Saloner, D., 2010, "An Efficient Two-Stage Approach for Image-Based FSI Analysis of Atherosclerotic Arteries," Biomechanics and Modeling in Mechanbiology, Vol. 9, No. 2, pp. 213-223. https://doi.org/10.1007/s10237-009-0172-3