DOI QR코드

DOI QR Code

클라우드 프로비저닝 서비스를 위한 퍼지 로직 기반의 자원 평가 방법

Fuzzy Logic-driven Virtual Machine Resource Evaluation Method for Cloud Provisioning Service

  • 김재권 (인하대학교 정보공학과) ;
  • 이종식 (인하대학교 정보공학과)
  • 투고 : 2012.07.03
  • 심사 : 2012.09.25
  • 발행 : 2013.03.31

초록

클라우드 환경은 여러 개의 컴퓨팅 자원들을 이용하는 분산 컴퓨팅 환경의 일종으로 가상머신을 이용 하여 작업을 처리한다. 클라우드 환경은 작업 요청에 따르는 부하분산과 빠른 작업 처리를 위한 프로비저닝 기술을 이용하여 가상머신의 상태에 따라 작업을 할당 한다. 하지만, 클라우드 환경의 작업 스케줄링을 위해서는 가상머신의 성능에 따르는 애매모호한 상태에 대한 가용성의 정의가 필요하다. 본 논문에서는 클라우드 환경의 프로비저닝 스케줄링을 위해 퍼지 로직 기반의 자원평가를 이용한 가상머신 프로비저닝 스케줄링(FVPRE: Fuzzy logic driven Virtual machine Provisioning scheduling using Resource Evaluation)을 제안한다. FVPRE는 각 가상머신의 정의하기 어려운 성능의 상태를 분석하여 자원 가용성에 대한 값을 구체화하여 정확한 자원의 가용성 평가를 통해 효율적인 프로비저닝 스케줄링이 가능하다. FVPRE는 클라우드 환경의 작업 처리에 대해 높은 처리율과 활용율을 보인다.

Cloud computing is one of the distributed computing environments and utilizes several computing resources. Cloud environment uses a virtual machine to process a requested job. To balance a workload and process a job rapidly, cloud environment uses a provisioning technique and assigns a task with a status of virtual machine. However, a scheduling method for cloud computing requires a definition of virtual machine availabilities, which have an obscure meaning. In this paper, we propose Fuzzy logic driven Virtual machine Provisioning scheduling using Resource Evaluation(FVPRE). FVPRE analyzes a state of every virtual machine and actualizes a value of resource availability. Thus FVPRE provides an efficient provisioning scheduling with a precise evaluation of resource availability. FVPRE shows a high throughput and utilization for job processing on cloud environments.

키워드

참고문헌

  1. Assuncao, M.D. and Costanzo. (2009), "A.: Evaluating the Cost-Benefit of Using Cloud Computing to Extend the Capacity of Clusters", In: 18th ACM International Symposium on High Performance Distributed Computing, New York, pp. 141-150.
  2. Bernard P. Zeigler, Herbert Praehofer, Tag Gon Kim (2000), "Theory of Modeling and Simulation: Integrating Discrete Event and Continuous Complex Dynamic Systems", Academic Press, pp. 76-96.
  3. Daniel Nurmi, Rich Wolski, Chris Grzegorczyk, Graziano Obertelli, Sunil Soman, Lamia Youseff and Dmitrii Zagorodnov (2009), "The Eucalyptus Open-source Cloud-computing System", Proceedings of 9th IEEE International Symposium on Cluster Computing and the Grid, pp. 124-131.
  4. L. Cherkasova, R. Gardner. "Measuring CPU Overhead for I/O Processing in the Xen Virtual Machine Monitor", Proceedings of the USNIX Annual Technical Conference, April 2005
  5. Lee, C.C. (1990), "Fuzzy Logic in Control Systems: Fuzzy Logic Controller", IEEE Trans. Systems, Man and Cybernetics, Vol. 20, pp. 404-435. https://doi.org/10.1109/21.52551
  6. Ma, Y.B., Jang, S.H. and Lee, J.S. (2011), "Ontology-based Resource Management for Cloud Computing", The 3rd Asian Conference on Intelligent Information and Database Systems (ACIIDS) 2011, Daegu, Korea, pp. 343-352.
  7. Park, D.H., Jang, S.H., Noh, C.H. and Lee, J.S. (2007), "Idle Resource Supplement Model and Validity Time Designation Model with Reliability Measurement in Grid Computing", Proceedings of Asia Simulation conference 2007, Seoul, South Korea, pp. 307-314.
  8. Mousumi Paul, Debabrata Samanta and Goutam Sanyal (2011), "Dynamic job Scheduling in Cloud Computing based on horizontal load", International Journal of Computer Technology and Applications, Vol. 2, Issue 5, pp. 1552-1556.
  9. Rajkumar Buyya, Rajiv Ranjan and Rodrigo N. Calheiros (2009), "Modeling and Simulation of Scalable Cloud Computing Environments and the CloudSim Toolkit: Challenges and Opportunities", International Conference on High Performance Computing & Simulation(HPCS) 2009, Leipzig, Germany, pp. 1-11.
  10. Rodrigo Calheiros, Rajiv Ranjan and Rajkumar Buyya (2011), "Virtual Machine Provisioning Based on Analytical Performance and QoS in Cloud Computing Environments", International Conference On Parallel Processing(ICPP), Taipei, Taiwan, pp. 295-304.
  11. Stuart Russell and Peter Norvig (1995), Artificial Intelligence : A Modern Approach, PearsonEducation, pp.458-463.
  12. Shaout A. and McAuliffe P.(1998), "Job scheduling using fuzzy load balancing in distributed system", Electronics Letter, Vol.34, No.20, pp. 1983-1985. https://doi.org/10.1049/el:19981134
  13. Ye Hu, Johnny Wong, Gabriel Iszlai and Marin Litoiu (2009), "Resource provisioning for cloud computing", CASCON '09 Proceedings of the 2009 Conference of the Center for Advanced Studies on Collaborative Research, USA, New York, pp. 101-111.

피인용 문헌

  1. Adaptive Resource Management Method base on ART in Cloud Computing Environment vol.23, pp.4, 2014, https://doi.org/10.9709/JKSS.2014.23.4.111
  2. Adaptive resource provisioning method using application-aware machine learning based on job history in heterogeneous infrastructures vol.20, pp.4, 2017, https://doi.org/10.1007/s10586-017-1148-1
  3. Hybrid cloud entropy systems based on Wiener process vol.45, pp.7, 2016, https://doi.org/10.1108/K-01-2016-0010
  4. Job Classifying method based on Data Traits for Increased Efficiency of Computational Resources in Distributed Environment vol.23, pp.4, 2014, https://doi.org/10.9709/JKSS.2014.23.4.219