DOI QR코드

DOI QR Code

Stimulation of Phospholipase D in HepG2 Cells After Transfection Using Cationic Liposomes

  • Lee, Sang Yoon (Chronic Inflammatory Disease Research Center, Ajou University School of Medicine) ;
  • Lee, Yan (Department of Chemistry, College of Natural Sciences, Seoul National University) ;
  • Choi, Joon Sig (Department of Biochemistry, College of Natural Sciences, Chungnam National University) ;
  • Park, Jong Sang (Department of Chemistry, College of Natural Sciences, Seoul National University) ;
  • Choi, Myung-Un (Department of Chemistry, College of Natural Sciences, Seoul National University)
  • Received : 2013.01.09
  • Accepted : 2013.01.14
  • Published : 2013.03.20

Abstract

Lipid events in liposome-mediated transfection (lipofection) are largely unknown. Here we studied whether phospholipase D (PLD), an important enzyme responsible for phospholipid breakdown, was affected during lipofection of HepG2 cells with a luciferase plasmid. Synthetic cholesterol (Chol) derivatives, including $3{\beta}$[L-ornithinamide-carbamoyl]Chol, [polyamidoamine-carbamoyl]Chol and $3{\beta}$[N-(N',N'-dimethylaminoethane)-carbamoyl]Chol, and a cationic lipid, N-[1-(2,3-dioleyloxy)propyl]-N,N,N-trimethylammonium chloride were mixed with a helper lipid dioleoylphosphatidylethanolamine to form respective cationic liposomes. All cationic liposomes were found to stimulate PLD. Although orders of magnitude effects of the cationic liposomes on PLD stimulation did not consistently match those on cytotoxicity and luciferase expression, a causal relationship between PLD activation and cytotoxic effect was remarkable. PLD stimulation by the cationic liposomes was likely due to their amphiphilic characters, leading to membrane perturbation, as supported by similar results obtained with other membrane-perturbing chemicals such as oleate, melittin, and digitonin. Our results suggest that lipofection induces cellular lipid changes such as a PLD-driven phospholipid turnover.

Keywords

References

  1. Ledley, F. D. Hum. Gene Ther. 1995, 6, 1129. https://doi.org/10.1089/hum.1995.6.9-1129
  2. Nishikawa, M.; Huang, L. Hum. Gene Ther. 2001, 12, 861. https://doi.org/10.1089/104303401750195836
  3. Choi, J. S.; Park, J. S. Methods Mol. Med. 2001, 65, 23.
  4. Tiera, M. J.; Winnik, F. O.; Fernandes, J. C. Curr. Gene Ther. 2006, 6, 59. https://doi.org/10.2174/156652306775515510
  5. Oku, N.; Yamazaki, Y.; Matsuura, M.; Sugiyama, M.; Hasegawa, M.; Nango, M. Adv. Drug Deliv. Rev. 2001, 52, 209. https://doi.org/10.1016/S0169-409X(01)00212-5
  6. Simoes, S.; Filipe, A.; Faneca, H.; Mano, M.; Penacho, N.; Duzgunes, N.; de Lima, M. P. Expert Opin. Drug Deliv. 2005, 2, 237. https://doi.org/10.1517/17425247.2.2.237
  7. Meidan, V. M.; Glezer, J.; Salomon, S.; Sidi, Y.; Barenholz, Y.; Cohen, J. S.; Lilling, G. J. Liposome Res. 2006, 16, 27. https://doi.org/10.1080/08982100500528685
  8. Peters, M. T.; Brigham, K. L.; King, G. A.; Meyrick, B. O.; Gao, X.; Stecenko, A. A. Exp. Lung Res. 1999, 25, 183. https://doi.org/10.1080/019021499270259
  9. Reynier, P.; Briane, D.; Coudert, R.; Fadda, G.; Bouchemal, N.; Bissieres, P.; Taillandier, E.; Cao, A. J. Drug Target. 2004, 12, 25. https://doi.org/10.1080/10611860410001683040
  10. Aissaoui, A.; Oudrhiri, N.; Petit, L.; Hauchecorne, M.; Kan, E.; Sainlos, M.; Julia, S.; Navarro, J.; Vigneron, J. P.; Lehn, J. M.; Lehn, P. Curr. Drug Targets 2002, 3, 1. https://doi.org/10.2174/1389450023348082
  11. Islam, R. U.; Hean, J.; van Otterlo, W. A.; de Koning, C. B.; Arbuthnot, P. Bioorg. Med. Chem. Lett. 2009, 19, 100. https://doi.org/10.1016/j.bmcl.2008.11.009
  12. Choi, J. S.; Lee, E. J.; Jang, H. S.; Park, J. S. J. Biochem. Mol. Biol. 2000, 33, 476.
  13. Choi, J. S.; Lee, E. J.; Jang, H. S.; Park, J. S. Bioconjug. Chem. 2001, 12, 108. https://doi.org/10.1021/bc000081o
  14. Jang, H. S.; Lee, Y.; Kim, T. I.; Park, J. S.; Choi, J. S. Bull. Korean Chem. Soc. 2012, 33, 1353. https://doi.org/10.5012/bkcs.2012.33.4.1353
  15. Jenkins, G. M.; Frohman, M. A. Cell. Mol. Life Sci. 2005, 62, 2305. https://doi.org/10.1007/s00018-005-5195-z
  16. Corrotte, M.; Chasserot-Golaz, S.; Huang, P.; Du, G.; Ktistakis, N. T.; Frohman, M. A.; Vitale, N.; Bader, M. F.; Grant, N. J. Traffic 2006, 7, 365. https://doi.org/10.1111/j.1600-0854.2006.00389.x
  17. Donaldson, J. G. Biochim. Biophys. Acta 2009, 1791, 845. https://doi.org/10.1016/j.bbalip.2009.05.011
  18. Komati, H.; Naro, F.; Mebarek, S.; De Arcangelis, V.; Adamo, S.; Lagarde, M.; Prigent, A. F.; Nemoz, G. Mol. Biol. Cell 2005, 16, 1232. https://doi.org/10.1091/mbc.E04-06-0459
  19. Lee, S. Y.; Park, H. S.; Lee, S. J.; Choi, M. U. Arch. Biochem. Biophys. 2001, 389, 57. https://doi.org/10.1006/abbi.2001.2314
  20. Lee, S. Y.; Park, N. G.; Choi, M. U. FEBS Lett. 1998, 432, 50. https://doi.org/10.1016/S0014-5793(98)00831-X
  21. Lee, S. Y.; Yeo, E. J.; Choi, M. U. Biochem. Biophys. Res. Commun. 1998, 244, 825. https://doi.org/10.1006/bbrc.1998.8348
  22. Mui, B.; Ahkong, Q. F.; Chow, L.; Hope, M. J. Biochim. Biophys. Acta 2000, 1467, 281. https://doi.org/10.1016/S0005-2736(00)00226-1
  23. Jung, K.; Koh, E.; Choi, M. U. Bull. Korean Chem. Soc. 1989, 10, 595.
  24. Chernomordik, L. V.; Leikina, E.; Frolov, V.; Bronk, P.; Zimmerberg, J. J. Cell Biol. 1997, 136, 81. https://doi.org/10.1083/jcb.136.1.81
  25. Dempsey, C. E. Biochim. Biophys. Acta 1990, 1031, 143. https://doi.org/10.1016/0304-4157(90)90006-X
  26. Vitale, M. L.; Rodriguez Del Castillo, A.; Trifaro, J. M. J. Neurochem. 1992, 59, 1717. https://doi.org/10.1111/j.1471-4159.1992.tb11003.x
  27. Takei, J.; Remenyi, A.; Dempsey, C. E. FEBS Lett. 1999, 442, 11. https://doi.org/10.1016/S0014-5793(98)01617-2
  28. Antollini, S. S.; Barrantes, F. J. J. Biol. Chem. 2002, 277, 1249. https://doi.org/10.1074/jbc.M106618200
  29. Lieberthal, W.; Sheridan, A. M.; Schwartz, J. H. J. Lab. Clin. Med. 1997, 129, 260. https://doi.org/10.1016/S0022-2143(97)90148-7
  30. Park, H. S.; Lee, S. Y.; Kim, Y. H.; Kim, J. Y.; Lee, S. J.; Choi, M. Biochim. Biophys. Acta 2000, 1484, 151. https://doi.org/10.1016/S1388-1981(00)00002-0
  31. Niidome, T.; Takaji, K.; Urakawa, M.; Ohmori, N.; Wada, A.; Hirayama, T.; Aoyagi, H. Bioconjug. Chem. 1999, 10, 773. https://doi.org/10.1021/bc990012d
  32. Campbell, R. B.; Balasubramanian, S. V.; Straubinger, R. M. Biochim. Biophys. Acta 2001, 1512, 27. https://doi.org/10.1016/S0005-2736(01)00290-5
  33. Regelin, A. E.; Fankhaenel, S.; Gurtesch, L.; Prinz, C.; von Kiedrowski, G.; Massing, U. Biochim. Biophys. Acta 2000, 1464, 151. https://doi.org/10.1016/S0005-2736(00)00126-7
  34. Carratu, L.; Franceschelli, S.; Pardini, C. L.; Kobayashi, G. S.; Horvath, I.; Vigh, L.; Maresca, B. Proc. Natl. Acad. Sci. USA 1996, 93, 3870. https://doi.org/10.1073/pnas.93.9.3870
  35. Los, D. A.; Murata, N. Sci. STKE 2000, 2000, pe1.