References
- Checchi, P. M.; Nettles, J. H.; Zhou, J.; Snyder, J. P.; Joshi, H. C. Trends Pharmacol. Sci. 2003, 24, 361. https://doi.org/10.1016/S0165-6147(03)00161-5
- Nogales, E. Annu. Rev. Biochem. 2000, 69, 277. https://doi.org/10.1146/annurev.biochem.69.1.277
- Jordan, M. A.; Wilson, L. Nat. Rev. Cancer 2004, 4, 253. https://doi.org/10.1038/nrc1317
- Valiron, O.; Caudron, N.; Job, D. Cell Mol. Life Sci. 2001, 58, 2069. https://doi.org/10.1007/PL00000837
- Jordan, A.; Hadfield, J. A.; Lawrence, N. J.; McGown, A. T. Med. Res. Rev. 1998, 18, 259. https://doi.org/10.1002/(SICI)1098-1128(199807)18:4<259::AID-MED3>3.0.CO;2-U
- Seibel, N. L.; Reaman, G. H. Invest. New Drugs 1996, 14, 49. https://doi.org/10.1007/BF00173682
- Schiff, P. B.; Horwitz, S. B. Proc. Natl. Acad. Sci. U.S.A. 1980, 77, 1561. https://doi.org/10.1073/pnas.77.3.1561
- Pellegrini, F.; Budman, D. R. Cancer Invest. 2005, 23, 264. https://doi.org/10.1081/CNV-200055970
- Hearn, B. R.; Shaw, S. J.; Myles, D. C. Compr. Med. Chem. II 2007, 7, 81.
- Li, Q.; Sham, H. L. Expert Opin. Ther. Patents 2002, 12, 1663. https://doi.org/10.1517/13543776.12.11.1663
- Hadfield, J. A.; Ducki, S.; Hirst, N.; McGown, A. T. Prog. Cell Cycle Res. 2003, 5, 309.
- Ghasemi, J. B.; Meftahi, N. J. Enzyme Inhib. Med. Chem. 2013, 28, 320. https://doi.org/10.3109/14756366.2011.625023
- Lill, M. A. Drug Discov. Today 2007, 12, 1013. https://doi.org/10.1016/j.drudis.2007.08.004
- Yang, G. F.; Huang, X. Curr. Pharm. Des. 2006, 12, 4601. https://doi.org/10.2174/138161206779010431
- Pirhadi, S.; Ghasemi, J. B. Eur. J. Med. Chem. 2010, 45, 4897. https://doi.org/10.1016/j.ejmech.2010.07.062
- Gayathri, P.; Pande, V.; Sivakumar, R.; Gupta, S. P. Bioorg. Med. Chem. 2001, 9, 3059. https://doi.org/10.1016/S0968-0896(01)00210-3
- Cramer, R. D.; Patterson, D. E.; Bunce, J. D. J. Am. Chem. Soc. 1988, 110, 5959. https://doi.org/10.1021/ja00226a005
- Klebe, G.; Abraham, U.; Mietzner, T. J. Med. Chem. 1994, 37, 4130. https://doi.org/10.1021/jm00050a010
- Ghasemi, J. B.; Pirhadi, S.; Ayati, M. Bull. Korean Chem. Soc. 2011, 32, 645. https://doi.org/10.5012/bkcs.2011.32.2.645
- Sirois, S.; Wei, D. Q.; Du, Q. S.; Chou, K. C. J. Chem. Inf. Comput. Sci. 2004, 44. 1111. https://doi.org/10.1021/ci034270n
- Liao, Q. H.; Gao, Q. Z.; Wei, J.; Chou, K. C. Med. Chem. 2011, 7,24. https://doi.org/10.2174/157340611794072698
- Liu, X. Y.; Wang, R. L.; Xu, W. R.; Tang, L. D.; Wang, S. Q.; Chou, K. C. Protein. Peptide. Lett. 2011, 18, 1021. https://doi.org/10.2174/092986611796378701
- Chou, K. C. Curr. Med. Chem. 2004, 11, 2105. https://doi.org/10.2174/0929867043364667
- Zhao, T. T.; Lu, X.; Yang, X. H.; Wang, L. M.; Li, X.; Wang, Z. C.; Gong, H. B.; Zhu, H. L. Bioorg. Med. Chem. 2012, 20, 3233. https://doi.org/10.1016/j.bmc.2012.03.057
- Liao, S. Y.; Chen, J. C.; Miao, T. F.; Shen, Y.; Zheng, K. C. J. Enzyme Inhib. Med. Chem. 2010, 25, 421. https://doi.org/10.3109/14756360903213499
- Liao, S. Y.; Qian, L.; Miao, T. F.; Lu, H. L.; Zheng, K. C. Eur. J. Med. Chem. 2009, 44, 2822. https://doi.org/10.1016/j.ejmech.2008.12.020
- Prinz, H.; Chamasmani, B.; Vogel, K.; Bohm, K. J.; Aicher, B.; Gerlach, M.; Gunther, E. G.; Amon, P.; Ivanov, I.; Muller, K. J. Med. Chem. 2011, 54, 4247. https://doi.org/10.1021/jm200436t
- Momany, F. A.; Rone, R. J. J. Comput. Chem. 1992, 13, 888. https://doi.org/10.1002/jcc.540130714
- Discovery Studio. Accelrys Software Inc, San Diego, CA, 2009.
- Politi, A.; Durdagi, S.; Moutevelis-Minakakis, P.; Kokotos, G.; Mavromoustakos, T. J. Mol. Graph. Model 2010, 29, 425. https://doi.org/10.1016/j.jmgm.2010.08.003
- http://www.ccdc.cam.ac.uk/support/documentation/gold/3_1/gold31. pdf.
- Tripos, QSARTM Manual, SYBYL, version 7.3, 2006, St. Louis, 2006.
- Baroni, M.; Costantino, G.; Cruciani, G.; Riganelli, D.; Valigi, R.; Clementi, S. Quant. Struct.-Act. Relat. 1993, 12, 9. https://doi.org/10.1002/qsar.19930120103
- Cho, S. J.; Tropsha, A. J. Med. Chem. 1995, 38, 1060. https://doi.org/10.1021/jm00007a003
- Wang, R.; Gao, Y.; Liu, L.; Lai, L. J. Mol. Model 1998, 4, 276. https://doi.org/10.1007/s008940050085
- Cramer, R. D.; Patterson, D. E.; Bunce, J. D. J. Am. Chem. Soc. 1988, 110, 5959. https://doi.org/10.1021/ja00226a005
- Clark, R.; Fox, P. J. Comput. Aided Mol. Des. 2004, 18, 563. https://doi.org/10.1007/s10822-004-4077-z
Cited by
- Pharmacophore elucidation and 3D-QSAR analysis of a new class of highly potent inhibitors of acid ceramidase based on maximum common substructure and field fit alignment methods vol.11, pp.5, 2014, https://doi.org/10.1007/s13738-013-0402-6
- Combined docking, molecular dynamics simulations and spectroscopic studies for the rational design of a dipeptide ligand for affinity chromatography separation of human serum albumin vol.20, pp.10, 2014, https://doi.org/10.1007/s00894-014-2446-7
- In silico approaches to explore structure of new GPR 119 agonists for treatment of type 2 diabetes mellitus vol.26, pp.5, 2017, https://doi.org/10.1007/s00044-017-1808-y
- An integrated ligand-based modelling approach to explore the structure-property relationships of influenza endonuclease inhibitors vol.28, pp.6, 2017, https://doi.org/10.1007/s11224-017-0933-z
- -Heterocyclic (4-Phenylpiperazin-1-yl)methanones Derived from Phenoxazine and Phenothiazine as Highly Potent Inhibitors of Tubulin Polymerization vol.60, pp.2, 2017, https://doi.org/10.1021/acs.jmedchem.6b01591
- Design of pyrimidine-based scaffolds as potential anticancer agents for human DHFR: three-dimensional quantitative structure-activity relationship by docking derived grid-independent descriptors vol.16, pp.11, 2013, https://doi.org/10.1007/s13738-019-01706-2