DOI QR코드

DOI QR Code

Docking, CoMFA and CoMSIA Studies of a Series of N-Benzoylated Phenoxazines and Phenothiazines Derivatives as Antiproliferative Agents

  • Ghasemi, Jahan B. (Chemistry Department, Faculty of Sciences, K. N. Toosi University of Technology) ;
  • Aghaee, Elham (Chemistry Department, Faculty of Sciences, K. N. Toosi University of Technology) ;
  • Jabbari, Ali (Chemistry Department, Faculty of Sciences, K. N. Toosi University of Technology)
  • Received : 2012.10.15
  • Accepted : 2012.12.26
  • Published : 2013.03.20

Abstract

Using generated conformations from docking analysis by Gold algorithm, some 3D-QSAR models; CoMFA and CoMSIA have been created on 39 N-benzoylated phenoxazines and phenothiazines, including their S-oxidized analogues. These molecules inhibit the polymerization of tubulin into microtubules and thus they have been studied for the development of antitumor drugs. Training set for the CoMFA and CoMSIA models using 30 docked conformations gives $q^2$ Leave one out (LOO) values of 0.756 and 0.617, and $r^2$ ncv values of 0.988 and 0.956, respectively. The ability of prediction and robustness of the models were evaluated by test set, cross validation (leave-one-out and leave-ten-out), bootstrapping, and progressive scrambling approaches. The all-orientation search (AOS) was used to achieve the best orientation to minimize the effect of initial orientation of the structures. The docking results confirmed CoMFA and CoMSIA contour maps. The docking and 3D-QSAR studies were thoroughly interpreted and discussed and confirmed the experimental $pIC_{50}$ values.

Keywords

References

  1. Checchi, P. M.; Nettles, J. H.; Zhou, J.; Snyder, J. P.; Joshi, H. C. Trends Pharmacol. Sci. 2003, 24, 361. https://doi.org/10.1016/S0165-6147(03)00161-5
  2. Nogales, E. Annu. Rev. Biochem. 2000, 69, 277. https://doi.org/10.1146/annurev.biochem.69.1.277
  3. Jordan, M. A.; Wilson, L. Nat. Rev. Cancer 2004, 4, 253. https://doi.org/10.1038/nrc1317
  4. Valiron, O.; Caudron, N.; Job, D. Cell Mol. Life Sci. 2001, 58, 2069. https://doi.org/10.1007/PL00000837
  5. Jordan, A.; Hadfield, J. A.; Lawrence, N. J.; McGown, A. T. Med. Res. Rev. 1998, 18, 259. https://doi.org/10.1002/(SICI)1098-1128(199807)18:4<259::AID-MED3>3.0.CO;2-U
  6. Seibel, N. L.; Reaman, G. H. Invest. New Drugs 1996, 14, 49. https://doi.org/10.1007/BF00173682
  7. Schiff, P. B.; Horwitz, S. B. Proc. Natl. Acad. Sci. U.S.A. 1980, 77, 1561. https://doi.org/10.1073/pnas.77.3.1561
  8. Pellegrini, F.; Budman, D. R. Cancer Invest. 2005, 23, 264. https://doi.org/10.1081/CNV-200055970
  9. Hearn, B. R.; Shaw, S. J.; Myles, D. C. Compr. Med. Chem. II 2007, 7, 81.
  10. Li, Q.; Sham, H. L. Expert Opin. Ther. Patents 2002, 12, 1663. https://doi.org/10.1517/13543776.12.11.1663
  11. Hadfield, J. A.; Ducki, S.; Hirst, N.; McGown, A. T. Prog. Cell Cycle Res. 2003, 5, 309.
  12. Ghasemi, J. B.; Meftahi, N. J. Enzyme Inhib. Med. Chem. 2013, 28, 320. https://doi.org/10.3109/14756366.2011.625023
  13. Lill, M. A. Drug Discov. Today 2007, 12, 1013. https://doi.org/10.1016/j.drudis.2007.08.004
  14. Yang, G. F.; Huang, X. Curr. Pharm. Des. 2006, 12, 4601. https://doi.org/10.2174/138161206779010431
  15. Pirhadi, S.; Ghasemi, J. B. Eur. J. Med. Chem. 2010, 45, 4897. https://doi.org/10.1016/j.ejmech.2010.07.062
  16. Gayathri, P.; Pande, V.; Sivakumar, R.; Gupta, S. P. Bioorg. Med. Chem. 2001, 9, 3059. https://doi.org/10.1016/S0968-0896(01)00210-3
  17. Cramer, R. D.; Patterson, D. E.; Bunce, J. D. J. Am. Chem. Soc. 1988, 110, 5959. https://doi.org/10.1021/ja00226a005
  18. Klebe, G.; Abraham, U.; Mietzner, T. J. Med. Chem. 1994, 37, 4130. https://doi.org/10.1021/jm00050a010
  19. Ghasemi, J. B.; Pirhadi, S.; Ayati, M. Bull. Korean Chem. Soc. 2011, 32, 645. https://doi.org/10.5012/bkcs.2011.32.2.645
  20. Sirois, S.; Wei, D. Q.; Du, Q. S.; Chou, K. C. J. Chem. Inf. Comput. Sci. 2004, 44. 1111. https://doi.org/10.1021/ci034270n
  21. Liao, Q. H.; Gao, Q. Z.; Wei, J.; Chou, K. C. Med. Chem. 2011, 7,24. https://doi.org/10.2174/157340611794072698
  22. Liu, X. Y.; Wang, R. L.; Xu, W. R.; Tang, L. D.; Wang, S. Q.; Chou, K. C. Protein. Peptide. Lett. 2011, 18, 1021. https://doi.org/10.2174/092986611796378701
  23. Chou, K. C. Curr. Med. Chem. 2004, 11, 2105. https://doi.org/10.2174/0929867043364667
  24. Zhao, T. T.; Lu, X.; Yang, X. H.; Wang, L. M.; Li, X.; Wang, Z. C.; Gong, H. B.; Zhu, H. L. Bioorg. Med. Chem. 2012, 20, 3233. https://doi.org/10.1016/j.bmc.2012.03.057
  25. Liao, S. Y.; Chen, J. C.; Miao, T. F.; Shen, Y.; Zheng, K. C. J. Enzyme Inhib. Med. Chem. 2010, 25, 421. https://doi.org/10.3109/14756360903213499
  26. Liao, S. Y.; Qian, L.; Miao, T. F.; Lu, H. L.; Zheng, K. C. Eur. J. Med. Chem. 2009, 44, 2822. https://doi.org/10.1016/j.ejmech.2008.12.020
  27. Prinz, H.; Chamasmani, B.; Vogel, K.; Bohm, K. J.; Aicher, B.; Gerlach, M.; Gunther, E. G.; Amon, P.; Ivanov, I.; Muller, K. J. Med. Chem. 2011, 54, 4247. https://doi.org/10.1021/jm200436t
  28. Momany, F. A.; Rone, R. J. J. Comput. Chem. 1992, 13, 888. https://doi.org/10.1002/jcc.540130714
  29. Discovery Studio. Accelrys Software Inc, San Diego, CA, 2009.
  30. Politi, A.; Durdagi, S.; Moutevelis-Minakakis, P.; Kokotos, G.; Mavromoustakos, T. J. Mol. Graph. Model 2010, 29, 425. https://doi.org/10.1016/j.jmgm.2010.08.003
  31. http://www.ccdc.cam.ac.uk/support/documentation/gold/3_1/gold31. pdf.
  32. Tripos, QSARTM Manual, SYBYL, version 7.3, 2006, St. Louis, 2006.
  33. Baroni, M.; Costantino, G.; Cruciani, G.; Riganelli, D.; Valigi, R.; Clementi, S. Quant. Struct.-Act. Relat. 1993, 12, 9. https://doi.org/10.1002/qsar.19930120103
  34. Cho, S. J.; Tropsha, A. J. Med. Chem. 1995, 38, 1060. https://doi.org/10.1021/jm00007a003
  35. Wang, R.; Gao, Y.; Liu, L.; Lai, L. J. Mol. Model 1998, 4, 276. https://doi.org/10.1007/s008940050085
  36. Cramer, R. D.; Patterson, D. E.; Bunce, J. D. J. Am. Chem. Soc. 1988, 110, 5959. https://doi.org/10.1021/ja00226a005
  37. Clark, R.; Fox, P. J. Comput. Aided Mol. Des. 2004, 18, 563. https://doi.org/10.1007/s10822-004-4077-z

Cited by

  1. Pharmacophore elucidation and 3D-QSAR analysis of a new class of highly potent inhibitors of acid ceramidase based on maximum common substructure and field fit alignment methods vol.11, pp.5, 2014, https://doi.org/10.1007/s13738-013-0402-6
  2. Combined docking, molecular dynamics simulations and spectroscopic studies for the rational design of a dipeptide ligand for affinity chromatography separation of human serum albumin vol.20, pp.10, 2014, https://doi.org/10.1007/s00894-014-2446-7
  3. In silico approaches to explore structure of new GPR 119 agonists for treatment of type 2 diabetes mellitus vol.26, pp.5, 2017, https://doi.org/10.1007/s00044-017-1808-y
  4. An integrated ligand-based modelling approach to explore the structure-property relationships of influenza endonuclease inhibitors vol.28, pp.6, 2017, https://doi.org/10.1007/s11224-017-0933-z
  5. -Heterocyclic (4-Phenylpiperazin-1-yl)methanones Derived from Phenoxazine and Phenothiazine as Highly Potent Inhibitors of Tubulin Polymerization vol.60, pp.2, 2017, https://doi.org/10.1021/acs.jmedchem.6b01591
  6. Design of pyrimidine-based scaffolds as potential anticancer agents for human DHFR: three-dimensional quantitative structure-activity relationship by docking derived grid-independent descriptors vol.16, pp.11, 2013, https://doi.org/10.1007/s13738-019-01706-2