DOI QR코드

DOI QR Code

Re-synthesis and Electrochemical Characteristics of LiFePO4 Cathode Materials Recycled from Scrap Electrodes

  • Kim, Hyung Sun (Center for Energy Convergence, Korea Institute of Science and Technology) ;
  • Shin, Eun Jung (Center for Energy Convergence, Korea Institute of Science and Technology)
  • Received : 2012.09.05
  • Accepted : 2012.12.17
  • Published : 2013.03.20

Abstract

This paper describes an environmentally friendly process for the recovery of $LiFePO_4$ cathode materials from scrap electrodes by a simple thermal treatment method. The active materials were easily separated from the aluminum substrate foil and polymeric binders were also decomposed at different temperatures ($400^{\circ}C$, $500^{\circ}C$, $600^{\circ}C$) for 30 min under nitrogen gas flow. The samples were characterized by X-ray diffraction (XRD), scanning electronic microscopy (SEM), Raman spectroscopy, Thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). The electrochemical properties of the recycled $LiFePO_4$ cathode were evaluated by galvanostatic charge and discharge modes. The specific charge/discharge capacities of the recycled $LiFePO_4$ cathode were similar to those of the original $LiFePO_4$ cathode. The $LiFePO_4$ cathode material recovered at $500^{\circ}C$ exhibits a somewhat higher capacity than those of other recovered materials at high current rates. The recycled $LiFePO_4$ cathode also showed a good cycling performance.

Keywords

References

  1. Mantuano, D.; Dorella, G.; Elias, R. Journal of Power Sources 2006, 159, 1510. https://doi.org/10.1016/j.jpowsour.2005.12.056
  2. Fouad, O.; Farghaly, F.; Bahgat, M. Journal of Analytical and Applied Pyrolysis 2007, 78, 65. https://doi.org/10.1016/j.jaap.2006.04.002
  3. Bernardes, A.; Espinosa, D.; Teniório, J. Journal of Power Sources 2004, 130, 291. https://doi.org/10.1016/j.jpowsour.2003.12.026
  4. Salgado, A.; Veloso, A.; Pereira, D. Journal of Power Sources 2003, 115, 367. https://doi.org/10.1016/S0378-7753(03)00025-9
  5. Wang, R.; Lin, Y.; Wu, S. Hydrometallurgy 2009, 99, 194. https://doi.org/10.1016/j.hydromet.2009.08.005
  6. Xu, J.; Thomas, H.; Francis, R. Journal of Power Sources 2008, 177, 512. https://doi.org/10.1016/j.jpowsour.2007.11.074
  7. Zhang, P.; Yokoyama, T.; Itabashi, O. Hydrometallurgy 1998, 47, 259. https://doi.org/10.1016/S0304-386X(97)00050-9
  8. Shin, S.; Kim, N.; Sohn, J. Hydrometallurgy 2005, 79, 172. https://doi.org/10.1016/j.hydromet.2005.06.004
  9. Ra, D.; Han, K. Journal of Power Sources 2006, 163, 284. https://doi.org/10.1016/j.jpowsour.2006.05.040
  10. Kim, D.; Sohn, J.; Lee, C. Journal of Power Sources 2004, 132, 145. https://doi.org/10.1016/j.jpowsour.2003.09.046
  11. Padhi, A. K.; Nanjundaswamy, K. S.; Masquelier, C. Journal of Electrochemical Society 1997, 144, 1188. https://doi.org/10.1149/1.1837571
  12. Mathew, S.; Joseph, B.; Sekhar, B. Nuclear Instruments and Methods in Physics Research Section B 2008, 266, 3241. https://doi.org/10.1016/j.nimb.2008.03.233
  13. Nemanich, R.; Lucovsky, G.; Solin, S. Materials Science and Engineering 1977, 31, 157. https://doi.org/10.1016/0025-5416(77)90029-5
  14. Nemanich, R.; Solin, S.; Lucovsky, G. Solid State Communications 1977, 21, 273. https://doi.org/10.1016/0038-1098(77)90185-5
  15. Yamada, A.; Chung, S.; Hinokuma, K. Journal of Electrochemical Society 2001, 148, A224. https://doi.org/10.1149/1.1348257

Cited by

  1. Cathode Materials Recycled from Scrap Electrodes. vol.44, pp.32, 2013, https://doi.org/10.1002/chin.201332019
  2. Three-dimensional embroidered current collectors for ultra-thick electrodes in batteries vol.6, pp.74, 2016, https://doi.org/10.1039/C6RA07413H
  3. Batteries Using Stoichiometric Sulfuric Acid Leaching System vol.5, pp.9, 2017, https://doi.org/10.1021/acssuschemeng.7b01594
  4. Toward sustainable and systematic recycling of spent rechargeable batteries vol.47, pp.19, 2018, https://doi.org/10.1039/C8CS00297E
  5. The Recycling of Spent Lithium-Ion Batteries: a Review of Current Processes and Technologies vol.1, pp.4, 2018, https://doi.org/10.1007/s41918-018-0012-1
  6. A method for recovering Li3PO4 from spent lithium iron phosphate cathode material through high-temperature activation vol.25, pp.12, 2013, https://doi.org/10.1007/s11581-019-03070-w
  7. Progress and Status of Hydrometallurgical and Direct Recycling of Li-Ion Batteries and Beyond vol.13, pp.3, 2013, https://doi.org/10.3390/ma13030801
  8. Direct Regeneration of Spent LiFePO4 Cathode Material by a Green and Efficient One-Step Hydrothermal Method vol.8, pp.48, 2013, https://doi.org/10.1021/acssuschemeng.0c07166
  9. Recycling Chocolate Aluminum Wrapping Foil as to Create Electrochemical Metal Strip Electrodes vol.26, pp.1, 2021, https://doi.org/10.3390/molecules26010021
  10. A comprehensive review on the pretreatment process in lithium-ion battery recycling vol.294, pp.None, 2021, https://doi.org/10.1016/j.jclepro.2021.126329