DOI QR코드

DOI QR Code

Molecular Modeling of Small Molecules as BVDV RNA-Dependent RNA Polymerase Allosteric Inhibitors

  • Chai, Han-Ha (Division of Animal Genomics and Bioinformatics, National Institute of Animal Science, Rural Development Administration) ;
  • Lim, Dajeong (Division of Animal Genomics and Bioinformatics, National Institute of Animal Science, Rural Development Administration) ;
  • Chai, Hee-Yeoul (Division of Biosafety Evaluation and Control, Korea National Institute of Health) ;
  • Jung, Eunkyoung (Insilicotech Co. Ltd.)
  • Received : 2012.10.09
  • Accepted : 2012.12.18
  • Published : 2013.03.20

Abstract

Bovine viral diarrhea virus (BVDV), a major pathogen of cattle, is a well-characterized pestivirus which has been used as a good model virus for HCV. The RNA-dependent RNA polymerase (RdRp) plays a key role in the RNA replication process, thus it has been targeted for antivirus drugs. We employed two-dimensional quantitative structure-activity relationship (2D-QSAR) and molecular field analysis (MFA) to identify the molecular substructure requirements, and the particular characteristics resulted in increased inhibitory activity for the known series of compounds to act as effective BVDV inhibitors. The 2D-QSAR study provided the rationale concept for changes in the structure to have more potent analogs focused on the class of arylazoenamines, benzimidazoles, and acridine derivatives with an optimal subset of descriptors, which have significantly contributed to overall anti-BVDV activity. MFA represented the molecular patterns responsible for the actions of antiviral compound at their receptors. We conclude that the polarity and the polarizability of a molecule play a main role in the inhibitory activity of BVDV inhibitors in the QSAR modeling.

Keywords

References

  1. Peterhans, E.; Bachofen, C.; Stalder, H.; Schweizer, M. Veterinary Research 2010, 41, 44. https://doi.org/10.1051/vetres/2010016
  2. Houe, H. Biologicals 2003, 31, 137. https://doi.org/10.1016/S1045-1056(03)00030-7
  3. Baier, A. Current Enzyme Inhibition 2009, 5, 209. https://doi.org/10.2174/157340809789630244
  4. Lindenbach, B. D.; Thiel, H. J.; Rice, C. M. Fields Virology 2007, 1, 1101.
  5. Wegelt, A.; Reimann, I.; Granzow, H.; Beer, M. Journal of General Virology 2011, 92, 1352. https://doi.org/10.1099/vir.0.029330-0
  6. Lindenbach, B. D.; Rice, C. M. In Fields Virology, 4th ed.; Knipe, D. M., Howley, P. M., Eds.; Philadelphia: Lippincott Williams and Wilkins: 2001; p 991.
  7. Puerstinger, G.; Paeshuyse, J.; De Clercq, E.; Neyts, J. Bioorganic & Medicinal Chemistry Letters 2007, 17, 390. https://doi.org/10.1016/j.bmcl.2006.10.039
  8. Puerstinger, G.; Paeshuyse, J.; Heinrich, S.; Mohr, J.; Schraffl, N.; Clercq, E.; Neyts, J. Bioorganic & Medicinal Chemistry Letters 2007, 17, 5111. https://doi.org/10.1016/j.bmcl.2007.07.015
  9. Paeshuyse, J.; Leyssen, P.; Mabery, E.; Boddeker, N.; Vrancken, R.; Froeyen, M.; Ansari, I. H.; Dutartre, H.; Rozenski, J.; Gil, L. H. V. G.; Letellier, C.; Lanford, R.; Canard, B.; Koenen, F.; Kerkhofs, P.; Donis, R. O.; Herdewijn, P.; Watson, J.; De Clercq, E.; Puerstinger, G.; Neyts, J. Journal of Virology 2006, 80, 149. https://doi.org/10.1128/JVI.80.1.149-160.2006
  10. Paeshuyse, J.; Chezal, J. M.; Froeyen, M.; Leyssen, P.; Dutartre, H.; Vrancken, R.; Canard, B.; Letellier, C.; Li, T.; Mittendorfer, H.; Koenen, F.; Kerkhofs, P.; De Clercq, E.; Herdewijn, P.; Puerstinger, G.; Gueiffier, A.; Chavignon, O.; Teulade, J. C.; Neyts, J. Journal of Virology 2007, 81, 11046. https://doi.org/10.1128/JVI.00388-07
  11. Paeshuyse, J.; Letellier, C.; Froeyen, M.; Dutartre, H.; Vrancken, R.; Canard, B.; De Clercq, E.; Gueiffier, A.; Teulade, J. C.; Herdewijn, P.; Puerstinger, G.; Koenen, F.; Kerkhofs, P.; Baraldi, P. G.; Neyts, J. Antiviral Research 2009, 82, 141. https://doi.org/10.1016/j.antiviral.2009.02.192
  12. Tonelli, M.; Boido, V.; La Colla, P.; Loddo, R.; Posocco, P.; Paneni, M. S.; Fermeglia, M.; Pricl, S. Bioorganic & Medicinal Chemistry 2010, 18, 2304. https://doi.org/10.1016/j.bmc.2010.01.058
  13. Tonelli, M.; Simone, M.; Tasso, B.; Novelli, F.; Boido, V.; Sparatore, F.; Palietti, G.; Pricl, S.; Giliberti, G.; Blois, S.; Ibba, C.; Sanna, G.; Loddo, R.; La Colla, P. Bioorganic & Medicinal Chemistry 2010, 18, 2937. https://doi.org/10.1016/j.bmc.2010.02.037
  14. Tonelli, M.; Boido, V.; Canu, C.; Sparatore, A.; Sparatore, F.; Paneni, M. S.; Fermeglia, M.; Pricl, S.; La Colla, P.; Casula, L.; Ibba, C.; Collu, D.; Loddo, R. Bioorganic & Medicinal Chemistry 2010, 18, 8447.
  15. Giliberti, G.; Ibba, C.; Marongiu, E.; Loddo, R.; Tonelli, M.; Boido, V.; Laurini, E.; Posocco, P.; Fermeglia, M.; Pricl, S. Bioorganic & Medicinal Chemistry 2010, 18, 6055. https://doi.org/10.1016/j.bmc.2010.06.065
  16. Giampieri, M.; Balbi, A.; Mazzei, M.; La Colla, P.; Ibba, C.; Loddo, R. Antiviral Research 2009, 83, 179. https://doi.org/10.1016/j.antiviral.2009.05.001
  17. Sako, K.; Aoyama, H.; Sato, S.; Hashimoto, Y.; Baba, M. Bioorganic & Medicinal Chemistry 2008, 16, 3780. https://doi.org/10.1016/j.bmc.2008.01.052
  18. Castro, E. F.; Fabian, L. E.; Caputto, M. E.; Gagey, D.; Finkielsztein, L. M.; Moltrasio, G. Y.; Moglioni, A. G.; Campos, R. H.; Cavallaro, L. V. Journal of Virology 2011, 85, 5436. https://doi.org/10.1128/JVI.00859-10
  19. Salim, M. T. A.; Okamoto, M.; Hosoda, S.; Aoyama, H.; Hashimoto, Y.; Bada, M. Antiviral Chemistry & Chemotherapy 2010, 20, 193. https://doi.org/10.3851/IMP1528
  20. Hosoda, S.; Aoyama, H.; Goto, Y.; Salim, M. T. A.; Okamoto, M.; Bada, M.; Hashimoto, Y. Bioorganic & Medicinal Chemistry Letters 2009, 19, 3157. https://doi.org/10.1016/j.bmcl.2009.04.137
  21. Givens, M. D.; Dykstra, C. C.; Brock, K. V.; Stringfellow, D. A.; Kumar, A.; Stephens, C. E.; Goker, H.; Boykin, D. W. Antimicrobial Agents and Chemotherapy 2003, 47, 2223. https://doi.org/10.1128/AAC.47.7.2223-2230.2003
  22. Givens, M. D.; Galik, P. K.; Riddell, K. P.; Dykstra, C. C.; Brock, K. V.; Stringfellow, D. A. Theriogenology 2005, 63, 1984. https://doi.org/10.1016/j.theriogenology.2004.09.004
  23. Ehrlich, P. Dtsch. Chem. Ges. 1909, 42, 17. https://doi.org/10.1002/cber.19090420105
  24. Gong, Y.; Trowbridge, R.; Macnaughton, T. B.; Westaway, E. G.; Shannon, A. D.; Gowans, E. J. Journal of General Virology 1996, 77, 2729. https://doi.org/10.1099/0022-1317-77-11-2729
  25. Li, Y.; Mcnally, J. Vrius Genes 2001, 23, 149. https://doi.org/10.1023/A:1011836003128
  26. Tonelli, M.; Vettoretti, G.; Tasso, B.; Novelli, F.; Boido, V.; Sparatore, F.; Busonera, B.; Ouhtit, A.; Farci, P.; Blois, S.; Giliberti, G.; La Colla, P. Antiviral Research 2011, 91, 133. https://doi.org/10.1016/j.antiviral.2011.05.005
  27. Discovery studio version 3.0 [http://www.acceryls.com/products/discovery-studio]
  28. Momany, F. A.; Rone, R. Journal of Computational Chemistry 1992, 13, 888. https://doi.org/10.1002/jcc.540130714
  29. Neria, E.; Fischer, S.; Karplus, M. Journal of Chemical Physics 1996, 105, 1902. https://doi.org/10.1063/1.472061
  30. Smellie, A.; Kahn, S. D.; Teig, S. L. Journal of Chemical Information Computer Sciences 1995, 35, 285.
  31. Smellie, A.; Kahn, S. D.; Teig, S. L. Journal of Chemical Information Computer Sciences 1995, 35, 295.
  32. Chen, K. X.; Xie, H. Y.; Li, Z. G.; Gao, J. R Bioorganic & Medicinal Chemistry Letters 2008, 18, 5381. https://doi.org/10.1016/j.bmcl.2008.09.056
  33. Rogers, D.; Hopfinger, A. J. Journal of Chemical Information Computer Sciences 1994, 34, 854.
  34. Fan, Y.; Shi, L. M.; Kohn, K. W.; Pommier, Y.; Weinstein, J. N. Journal of Medicinal Chemistry 2001, 44, 3254. https://doi.org/10.1021/jm0005151
  35. Deb, K.; Pratab, A.; Agarwal, S.; Meyarivan, T. IEEE Transactions on Evolutionary Computation 2002, 6, 182. https://doi.org/10.1109/4235.996017
  36. Bender, A.; Mussa, H. Y.; Glen, R. C.; Reilin, S. Journal of Chemical Information Computer Sciences 2004, 44, 1708.
  37. Shi, L. M.; Fan, Y.; Myers, T. G.; O'conner, P. M.; Paull, K. D.; Friend, S. H.; Weinstein, J. N. Journal of Chemical Information Computer Sciences 1998, 38, 189.
  38. Friedman, J. H. Anal. Stat. 1991, 19, 1. https://doi.org/10.1214/aos/1176347963
  39. Hirashima, A.; Morimoto, M.; Kuwano, E.; Eto, M. Bioorganic & Medicinal Chemistry 2003, 11, 3753. https://doi.org/10.1016/S0968-0896(03)00313-4
  40. Hirashima, A.; Eiraku, T.; Kuwano, E.; Eto, M. Internet Electronic Journal of Molecular Design 2003, 2, 511.
  41. Equbal, T.; Silakari, O.; Ravikumar, M. European Journal of Medicinal Chemistry 2008, 43, 204. https://doi.org/10.1016/j.ejmech.2007.02.013
  42. Wold, S., Eriksson, L. H., Eds.; VCH: Weinheim, Germany, 1995; p 312.
  43. Debnath, A. K. In Combinatorial Library Design and Evaluation; Ghosh, A. K., Viswanadhan, V. N., Eds.; Marcel Dekker Inc.: New York, 2001; p 73.
  44. Re, D. G.; Pullman, B.; Yonezawa, T. Biochemica et Biophysica Acta 1963, 75, 153. https://doi.org/10.1016/0006-3002(63)90595-X
  45. Marsili, M.; Gasteiger, J. Croatica Chemica Acta 1980, 53, 601.
  46. Bonchev, D. Chemometrics Series; Bawden, D. D., Ed.; 1983; 5, New York: Research Studies Press Ltd.
  47. Stanton, D. T.; Jurs, P. C. Analytical Chemistry 1990, 62, 2323. https://doi.org/10.1021/ac00220a013
  48. Stanton, D. T.; Egolf, L. M.; Jurs, P. C.; Martin, G. H. Journal of Chemical Information Computer Sciences 1992, 32, 306.
  49. Subhash, C. B.; Gregory, D. G.; Gerald, J. N. From Chemical Topology to Three-Dimensional Geometry Topics in Applied Chemistry 2002, 73.
  50. Mekenyan, O.; Bonchev, D.; Trinajstiae, N. Int. J. Quantum Chem. 1989, 18, 369.

Cited by

  1. Understanding the Interaction Determinants of CAPN1 Inhibition by CAST4 from Bovines Using Molecular Modeling Techniques vol.19, pp.9, 2014, https://doi.org/10.3390/molecules190914316
  2. Evaluation of Novel Dual Acetyl- and Butyrylcholinesterase Inhibitors as Potential Anti-Alzheimer’s Disease Agents Using Pharmacophore, 3D-QSAR, and Molecular Docking Approaches vol.22, pp.8, 2017, https://doi.org/10.3390/molecules22081254
  3. Chromium(III) and iron(III) inhibits replication of DNA and RNA viruses vol.30, pp.4, 2017, https://doi.org/10.1007/s10534-017-0027-9
  4. Computational Study Exploring the Interaction Mechanism of Benzimidazole Derivatives as Potent Cattle Bovine Viral Diarrhea Virus Inhibitors vol.64, pp.29, 2013, https://doi.org/10.1021/acs.jafc.6b01067