DOI QR코드

DOI QR Code

Chemical Imaging Analysis of the Micropatterns of Proteins and Cells Using Cluster Ion Beam-based Time-of-Flight Secondary Ion Mass Spectrometry and Principal Component Analysis

  • Shon, Hyun Kyong (Center for NanoBio Convergence, Korea Research Institute of Standards and Science (KRISS)) ;
  • Son, Jin Gyeong (Center for NanoBio Convergence, Korea Research Institute of Standards and Science (KRISS)) ;
  • Lee, Kyung-Bok (Division of Life Science, Korea Basic Science Institute (KBSI)) ;
  • Kim, Jinmo (Center for NanoBio Convergence, Korea Research Institute of Standards and Science (KRISS)) ;
  • Kim, Myung Soo (Department of Chemistry, Seoul National University) ;
  • Choi, Insung S. (Department of Chemistry, KAIST) ;
  • Lee, Tae Geol (Center for NanoBio Convergence, Korea Research Institute of Standards and Science (KRISS))
  • Received : 2012.11.03
  • Accepted : 2012.12.11
  • Published : 2013.03.20

Abstract

Micropatterns of streptavidin and human epidermal carcinoma A431 cells were successfully imaged, as received and without any labeling, using cluster $Au_3{^+}$ ion beam-based time-of-flight secondary ion mass spectrometry (TOF-SIMS) together with a principal component analysis (PCA). Three different analysis ion beams ($Ga^+$, $Au^+$ and $Au_3{^+}$) were compared to obtain label-free TOF-SIMS chemical images of micropatterns of streptavidin, which were subsequently used for generating cell patterns. The image of the total positive ions obtained by the $Au_3{^+}$ primary ion beam corresponded to the actual image of micropatterns of streptavidin, whereas the total positive-ion images by $Ga^+$ or $Au^+$ primary ion beams did not. A PCA of the TOF-SIMS spectra was initially performed to identify characteristic secondary ions of streptavidin. Chemical images of each characteristic ion were reconstructed from the raw data and used in the second PCA run, which resulted in a contrasted - and corrected - image of the micropatterns of streptavidin by the $Ga^+$ and $Au^+$ ion beams. The findings herein suggest that using cluster-ion analysis beams and multivariate data analysis for TOF-SIMS chemical imaging would be an effectual method for producing label-free chemical images of micropatterns of biomolecules, including proteins and cells.

Keywords

References

  1. Pacholski, M. L.; Winograd, N. Chem. Rev. 1999, 99, 2977. https://doi.org/10.1021/cr980137w
  2. Kumar, A.; Abbott, N. L.; Kim, E.; Biebuyck, H. A.; Whitesides, G. M. Acc. Chem. Res. 1995, 28, 219. https://doi.org/10.1021/ar00053a003
  3. Mrksich, M.; Whitesides, G. M. Trends. Biotechnol. 1995, 13, 228. https://doi.org/10.1016/S0167-7799(00)88950-7
  4. Blawas, A. S.; Reichert, W. M. Biomaterials 1998, 19, 595. https://doi.org/10.1016/S0142-9612(97)00218-4
  5. Makohliso, S. A.; Léonard, D.; Giovangrandi, L.; Mathieu, H. J.; Ilegems, M.; Aebischer, P. Langmuir 1995, 15, 2940.
  6. Jin, G.; Tengvall, P.; Lundström, I.; Arwin, H. Anal. Biochem. 1995, 232, 69. https://doi.org/10.1006/abio.1995.9959
  7. Wadu-Mesthrige, K.; Xu, S.; Amro, N. A.; Liu, G. Langmuir 1999, 15, 8580. https://doi.org/10.1021/la991196n
  8. Yip, C. M.; Brader, M. L.; Frank, B. H.; DeFelippis, M. R.; Ward, M. D. Biophys. J. 2000, 78, 466. https://doi.org/10.1016/S0006-3495(00)76609-4
  9. Jordan, C. E.; Frutos, A. G.; Thiel, A. J.; Corn, R. M. Anal. Chem. 1997, 69, 4939. https://doi.org/10.1021/ac9709763
  10. Fulghum, J. E. J. Electron. Spectrosc. Relat. Phenom. 1999, 100, 331. https://doi.org/10.1016/S0368-2048(99)00054-7
  11. Hagenhoff, B. Biosens. Bioelectron. 1995, 10, 885. https://doi.org/10.1016/0956-5663(95)99226-B
  12. Ostrowski, S. G.; Bell, C. T. V.; Winograd, N.; Ewing, A. G. Science 2004, 305, 71. https://doi.org/10.1126/science.1099791
  13. Tourovskaia, A.; Barber, T.; Wickes, B. T.; Hirdes, D.; Grin B.; Castner, D. G.; Healy, K. E.; Folch, A. Langmuir 2003, 19, 4754. https://doi.org/10.1021/la0267948
  14. Belu, A. M.; Yang, Z.; Aslami, R.; Chilkoti, A. Anal. Chem. 2001, 73, 143. https://doi.org/10.1021/ac000771l
  15. Revzin, A.; Russell, R. J.; Yadavalli, V. K.; Koh, W.-G.; Deister, C.; Hile, D. D.; Mellott, M. B.; Pishko, M. V. Langmuir 2001, 17, 5440. https://doi.org/10.1021/la010075w
  16. Michel, R.; Lussi, J. W.; Csucs, G.; Reviakine, I.; Danuser, G.; Ketterer, B.; Hubbell, J. A.; Textor, M.; Spencer, N. D. Langmuir 2002, 18, 3281. https://doi.org/10.1021/la011715y
  17. Castner, D. G. Nature 2003, 422, 129. https://doi.org/10.1038/422129a
  18. Winograd, N. Anal. Chem. 2005, 77, 142A.
  19. Gillen, G.; Roberson, S. Rapid Comm. Mass Spectrom. 1998, 12, 1303. https://doi.org/10.1002/(SICI)1097-0231(19981015)12:19<1303::AID-RCM330>3.0.CO;2-7
  20. Weibel, D.; Wong, S.; Lockyer, N.; Blenkinsopp, P.; Hill, R.; Vickerman, J. C. Anal. Chem. 2003, 75, 1754. https://doi.org/10.1021/ac026338o
  21. Kollmer, F. Appl. Surf. Sci. 2004, 231-232, 153. https://doi.org/10.1016/j.apsusc.2004.03.101
  22. Touboul. D.; Halgand, F.; Brunelle, A.; Kersting, R.; Tallarek, E.; Hangenhoff, B.; Laprévote, O. Anal. Chem. 2004, 76, 1550. https://doi.org/10.1021/ac035243z
  23. Sjövall, P.; Lausmaa, J.; Johnsson, B. Anal. Chem. 2004, 76, 4271. https://doi.org/10.1021/ac049389p
  24. Wagner, M. S.; Graham, D. J.; Ratner, B. D.; Castner, D. G. Surf. Sci. 2004, 570, 78. https://doi.org/10.1016/j.susc.2004.06.184
  25. Wagner, M. S.; Castner, D. G. Langmuir 2001, 17, 4649. https://doi.org/10.1021/la001209t
  26. Smentkowski, V. S.; Keenan, M. R.; Ohlhausen, J. A.; Kotula, P. G. Anal. Chem. 2005, 77, 1530. https://doi.org/10.1021/ac048468y
  27. Park, T. J.; Lee, K.-B.; Lee, S. J.; Park, J. P.; Lee, Z.-W.; Lee, S. Y.; Choi, I. S. J. Am. Chem. Soc. 2004, 126, 10512. https://doi.org/10.1021/ja047894y
  28. Park, J. P.; Lee, S. J.; Park, T. J.; Lee, K.-B.; Choi, I. S.; Lee, S. Y.; Kim, M.-G.; Chung, B. H. Biotechnol. Bioprocess Eng. 2004, 9, 137. https://doi.org/10.1007/BF02932997
  29. Lee, Z.-W.; Lee, K.-B.; Hong, J.-H.; Kim, J.-H.; Choi, I.; Choi, I. S. Chem. Lett. 2005, 34, 648. https://doi.org/10.1246/cl.2005.648
  30. Xia Y.; Whitesides, G. M. Angew. Chem. Int. Ed. 1998, 37, 551.
  31. Hyun, J.; Ma, H.; Banerjee, P.; Cole, J.; Gonsalves, K.; Chilkoti, A. Langmuir 2002, 18, 2975. https://doi.org/10.1021/la015712x
  32. Lahann, J.; Balcells, M.; Rodon, T.; Lee, J.; Choi, I. S.; Jensen, K. F.; Langer, R. Langmuir 2002, 18, 3632. https://doi.org/10.1021/la011464t
  33. Lee, K.-B.; Kim, D. J.; Lee, Z.-W.; Woo, S. I.; Choi, I. S. Langmuir 2004, 20, 2531. https://doi.org/10.1021/la036209i

Cited by

  1. Low Temperature Thermal Dependent Filgrastim Adsorption Behavior Detected with ToF-SIMS vol.29, pp.50, 2013, https://doi.org/10.1021/la403607m
  2. Experimental Studies on the Classification of Airborne Particles Based on Their Optical Properties vol.39, pp.3, 2018, https://doi.org/10.1002/bkcs.11396