DOI QR코드

DOI QR Code

Comparison of Carbon Dioxide Absorption in Aqueous MEA, DEA, TEA, and AMP Solutions

  • Kim, Young Eun (Greenhouse Gas Department, Korea Institute of Energy Research) ;
  • Lim, Jin Ah (Greenhouse Gas Department, Korea Institute of Energy Research) ;
  • Jeong, Soon Kwan (Greenhouse Gas Department, Korea Institute of Energy Research) ;
  • Yoon, Yeo Il (Greenhouse Gas Department, Korea Institute of Energy Research) ;
  • Bae, Shin Tae (Materials Development Center, Hyundai Motor Group) ;
  • Nam, Sung Chan (Greenhouse Gas Department, Korea Institute of Energy Research)
  • Received : 2012.09.23
  • Accepted : 2012.12.08
  • Published : 2013.03.20

Abstract

The separation and capture process of carbon dioxide from power plants is garnering interest as a method to reduce greenhouse gas emissions. In this study, aqueous alkanolamine solutions were studied as absorbents for $CO_2$ capture. The solubility of $CO_2$ in aqueous alkanolamine solutions was investigated with a continuous stirred reactor at 313, 333 and 353 K. Also, the heat of absorption ($-{\Delta}H_{abs}$) between the absorbent and $CO_2$ molecules was measured with a differential reaction calorimeter (DRC) at 298 K. The solubility and heat of absorption were determined at slightly higher than atmospheric pressure. The enthalpies of $CO_2$ absorption in monoethanolamine (MEA), diethanolamine (DEA), triethanolamine (TEA), and 2-amino-2-methyl-1-propanol (AMP) were 88.91, 70.44, 44.72, and 63.95, respectively. This investigation showed that the heat of absorption is directly related to the quantity of heat for absorbent regeneration, and is dependent on amine type and $CO_2$ loading.

Keywords

References

  1. Oexmann, J. Int. J. Greenhouse Gas Cont. 2010, 4, 36. https://doi.org/10.1016/j.ijggc.2009.09.010
  2. Kim, I.; Svendsen, H. F. Ind. Eng. Chem. Res. 2007, 46, 5803. https://doi.org/10.1021/ie0616489
  3. Versteeg, G. F.; van Swaaij, W. P. M. Chem. Eng. Sci. 1988, 43, 573. https://doi.org/10.1016/0009-2509(88)87017-9
  4. Versteeg, G. F.; van Swaaij, W. P. M. Chem. Eng. Sci. 1988, 43, 587. https://doi.org/10.1016/0009-2509(88)87018-0
  5. Filburn, T.; Helblb, J. J.; Weiss, R. A. Ind. Eng. Chem. Res. 2005, 44, 1542. https://doi.org/10.1021/ie0495527
  6. Hagewiesche, D. P.; Ashour, S. S.; Al-ghawas, H. A.; Sandall, O. C. Chem. Eng. Sci. 1995, 50, 1071. https://doi.org/10.1016/0009-2509(94)00489-E
  7. Ramachandran, N.; Aboudheir, A.; Idem, R.; Tontiwachwuthikul, P. Ind. Eng. Chem. Res. 2006, 45, 2608. https://doi.org/10.1021/ie0505716
  8. Mathonat, C.; Majer, V.; Mather, A. E.; Groiler, J.-P. E. Fluid Phase Equilib. 1997, 140, 171. https://doi.org/10.1016/S0378-3812(97)00182-9
  9. Arcis, H.; Rodier, L.; Coxam, J.-Y. J. Chem. Thermodynamics 2007, 39, 878. https://doi.org/10.1016/j.jct.2006.11.011
  10. Kim, I.; Hoff, K. A.; Hessen, E. T.; Haug-Warberg, T.; Svendsen, H. F. Chem. Eng. Sci. 2009, 64, 2027. https://doi.org/10.1016/j.ces.2008.12.037
  11. McCann, N.; Maeder, M.; Hasse, H. Energy Procedia 2011, 4, 1542. https://doi.org/10.1016/j.egypro.2011.02.023
  12. Nogent, H.; Le Tacon, X. J. Loss Prev. Process Ind. 2003, 16, 133. https://doi.org/10.1016/S0950-4230(02)00109-2
  13. Carson, J. K.; Marsh, K. N.; Mather, A. E. J. Chem. Thermodynamics 2000, 32, 1285. https://doi.org/10.1006/jcht.2000.0680
  14. Chowdhury, F. A.; Okabe, H.; Shimizu, S.; Onoda, M.; Fujioka, Y. Energy Procedia 2009, 1, 1214.
  15. Chowdhury, F. A.; Okabe, H.; Yamada, H.; Onoda, M.; Fujioka, Y. Energy Procedia 2011, 4, 201. https://doi.org/10.1016/j.egypro.2011.01.042

Cited by

  1. Interaction with Various Aqueous Amine Structures vol.118, pp.25, 2014, https://doi.org/10.1021/jp503929g
  2. Adsorption Thermodynamics over N-Substituted/Grafted Graphanes: A DFT Study vol.30, pp.7, 2014, https://doi.org/10.1021/la4048837
  3. Impact of speciation on CO2 capture performance using blended absorbent containing ammonia, triethanolamine and 2-amino-2-methyl-1-propanol vol.31, pp.7, 2014, https://doi.org/10.1007/s11814-014-0030-6
  4. Carbon Dioxide Absorption in Triethanolamine Aqueous Solutions: Hydrodynamics and Mass Transfer vol.37, pp.3, 2014, https://doi.org/10.1002/ceat.201300603
  5. Capture Using Monoethanolamine in a Bubble-Column Scrubber vol.38, pp.2, 2014, https://doi.org/10.1002/ceat.201400240
  6. and oxiranes: a DFT endorsed study vol.50, pp.89, 2014, https://doi.org/10.1039/C4CC04195J
  7. Capture Efficiency, Corrosion Properties, and Ecotoxicity Evaluation of Amine Solutions Involving Newly Synthesized Ionic Liquids vol.53, pp.30, 2014, https://doi.org/10.1021/ie501897d
  8. Ultrasound irradiation for desorption of carbon dioxide gas from aqueous solutions of monoethanolamine vol.53, pp.7S, 2014, https://doi.org/10.7567/JJAP.53.07KE14
  9. Absorption Characteristics of Aqueous Solutions of Diamines: Absorption Capacity, Specific Heat Capacity, and Heat of Absorption vol.29, pp.4, 2015, https://doi.org/10.1021/ef500561a
  10. 1-Amine-2-propanol + Triethanolamine Aqueous Blends for Carbon Dioxide Absorption in a Bubble Reactor vol.29, pp.8, 2015, https://doi.org/10.1021/acs.energyfuels.5b00686
  11. capture by dry alkanolamines and an efficient microwave regeneration process vol.3, pp.12, 2015, https://doi.org/10.1039/C4TA06273F
  12. Carbon Dioxide Capture from Reforming Gases using Acetic Acid-mixed Chemical Absorbents vol.36, pp.7, 2015, https://doi.org/10.1002/bkcs.10365
  13. CO2 capture using aqueous solutions of K2CO3+2-methylpiperazine and monoethanolamine: Specific heat capacity and heat of absorption vol.33, pp.12, 2016, https://doi.org/10.1007/s11814-016-0186-3
  14. Reconciliation of outliers in CO2-alkanolamine-H2O datasets by robust neural network winsorization vol.28, pp.9, 2017, https://doi.org/10.1007/s00521-016-2213-z
  15. Capture and Mineralization in Various Alkanolamines Using Calcium Chloride vol.31, pp.1, 2017, https://doi.org/10.1021/acs.energyfuels.6b02448
  16. Chemical Absorption of Carbon Dioxide Using Aqueous Piperidine Derivatives vol.40, pp.12, 2017, https://doi.org/10.1002/ceat.201700375
  17. Calcium Carbonate Precipitation for CO2 Storage and Utilization: A Review of the Carbonate Crystallization and Polymorphism vol.5, pp.2296-598X, 2017, https://doi.org/10.3389/fenrg.2017.00017
  18. Absorption Capacity via Correlating Measured Electrical Conductivity in a Diethanolamine Solvent System Compared to Monoethanolamine Solvent Systems vol.62, pp.5, 2017, https://doi.org/10.1021/acs.jced.6b00862
  19. Effect of Carbonic Anhydrase on CO2 Absorption in Amine Solutions for CO2 Capture vol.39, pp.11, 2017, https://doi.org/10.4491/KSEE.2017.39.11.607
  20. Assessing the potential of nanoporous carbon adsorbents from polyethylene terephthalate (PET) to separate CO2 from flue gas vol.24, pp.3, 2018, https://doi.org/10.1007/s10450-018-9943-4
  21. Role of Amine Type in CO2 Separation Performance within Amine Functionalized Silica/Organosilica Membranes: A Review vol.8, pp.7, 2018, https://doi.org/10.3390/app8071032
  22. capture performance using piperazine (PZ) and diethylenetriamine (DETA) bi-solvent blends pp.21523878, 2019, https://doi.org/10.1002/ghg.1851
  23. 레미콘회수수를 이용한 액상탄산화에 관한 연구 vol.30, pp.4, 2013, https://doi.org/10.12925/jkocs.2013.30.4.770
  24. 입체 장애 알카놀아민 혼합 수용액에서 중탄산칼륨 결정의 냉각 반용매 결정화 vol.20, pp.4, 2013, https://doi.org/10.7464/ksct.2014.20.4.383
  25. CO2Absorbing Capacity of MEA vol.2015, pp.None, 2013, https://doi.org/10.1155/2015/965015
  26. 산업부산물의 Ca 성분 용출 특성 및 액상탄산화 반응을 이용한 침강성 탄산칼슘 제조에 관한 실험적 연구 vol.32, pp.1, 2013, https://doi.org/10.12925/jkocs.2015.32.1.116
  27. Excess Properties for the Binary System of Poly(ethylene glycol) 200 + 1,2-Ethanediamine at T = (303.15 to 323.15) K and the System’s Spectroscopic Studies vol.61, pp.5, 2013, https://doi.org/10.1021/acs.jced.5b00804
  28. 레미콘회수수를 이용한 액상탄산화 Pilot plant(System) 최적화에 관한 연구 vol.33, pp.2, 2013, https://doi.org/10.12925/jkocs.2016.33.2.239
  29. Performance comparison of aqueous MEA and AMP solutions for biogas upgrading vol.34, pp.3, 2013, https://doi.org/10.1007/s11814-016-0346-5
  30. Preparation and Characterization of Impregnated Commercial Rice Husks Activated Carbon with Piperazine for Carbon Dioxide (CO2) Capture vol.206, pp.None, 2013, https://doi.org/10.1088/1757-899x/206/1/012005
  31. Development of Crosslinked PEI Solid Adsorbents for CO2 Capture vol.114, pp.None, 2013, https://doi.org/10.1016/j.egypro.2017.03.1373
  32. 에폭사이드와 암모니아의 반응을 이용한 합성아민의 이산화탄소 흡수연구 vol.28, pp.5, 2013, https://doi.org/10.7316/khnes.2017.28.5.561
  33. Solvent selection and design for CO2capture - how we might have been missing the point vol.1, pp.10, 2017, https://doi.org/10.1039/c7se00404d
  34. Investigation of CO2 Capture in Nonaqueous Ethylethanolamine Solution Mixed with Porous Solids vol.63, pp.5, 2018, https://doi.org/10.1021/acs.jced.7b00761
  35. Activated Carbon Supported Amine Functionalized Ionic Liquids for CO2 Sorption vol.1123, pp.None, 2013, https://doi.org/10.1088/1742-6596/1123/1/012069
  36. Enhanced solubility of carbon dioxide for encapsulated ionic liquids in polymeric materials vol.354, pp.None, 2013, https://doi.org/10.1016/j.cej.2018.08.086
  37. Study of Equilibrium Solubility, Heat of Absorption, and Speciation of CO2 Absorption into Aqueous 2-Methylpiperazine (2MPZ) Solution vol.57, pp.51, 2018, https://doi.org/10.1021/acs.iecr.8b03104
  38. Preparation and CO2 breakthrough adsorption of MIL-101(Cr)-D composites vol.21, pp.5, 2019, https://doi.org/10.1007/s11051-019-4526-1
  39. Modeling Thermodynamic Derivative Properties and Gas Solubility of Ionic Liquids with ePC-SAFT vol.58, pp.19, 2019, https://doi.org/10.1021/acs.iecr.9b00254
  40. Nitrogen Sorption in a Transition Metal Complex Solution for N2 Rejection from Methane vol.58, pp.29, 2013, https://doi.org/10.1021/acs.iecr.9b01356
  41. Carbon capture by DEA-infused hydrogels vol.88, pp.None, 2019, https://doi.org/10.1016/j.ijggc.2019.06.005
  42. Foaming Dependence on the Interface Affinities of Surfactant-like Molecules vol.58, pp.43, 2013, https://doi.org/10.1021/acs.iecr.9b03105
  43. Fine Bubble‐based CO2 Capture Mediated by Triethanolamine Coupled to Whole Cell Biotransformation vol.91, pp.12, 2013, https://doi.org/10.1002/cite.201900113
  44. Fast screening of amine/physical solvent systems and mass transfer studies on efficient aqueous hybrid MEA/Sulfolane solution for postcombustion CO2 capture vol.95, pp.3, 2020, https://doi.org/10.1002/jctb.6246
  45. Low-Temperature Regeneration of Amines Integrated with Production of Structure-Controlled Calcium Carbonates for Combined CO2 Capture and Utilization vol.34, pp.3, 2020, https://doi.org/10.1021/acs.energyfuels.9b04339
  46. Comparative energy and environmental performance of 40 % and 30 % monoethanolamine at PACT pilot plant vol.95, pp.None, 2020, https://doi.org/10.1016/j.ijggc.2019.102946
  47. DBU-Glycerol Solution: A CO2 Absorbent with High Desorption Ratio and Low Regeneration Energy vol.54, pp.12, 2013, https://doi.org/10.1021/acs.est.0c01332
  48. New Experimental Data on Equilibrium CO2 Loading into Aqueous 3-Dimethyl Amino-1-propanol and 1,5-Diamino-2-methylpentane Blend: Empirical Model and CO2 Absorption Enthalpy vol.66, pp.1, 2013, https://doi.org/10.1021/acs.jced.0c00851
  49. Recent advances in carbon capture storage and utilisation technologies: a review vol.19, pp.2, 2021, https://doi.org/10.1007/s10311-020-01133-3
  50. Comparative Study on Convective and Microwave-Assisted Heating of Zeolite-Monoethanolamine Adsorbent Impregnation Process for CO2 Adsorption vol.59, pp.2, 2013, https://doi.org/10.9713/kcer.2020.59.2.260
  51. Predicting Vapor-Liquid Equilibria for Sour-Gas Absorption in Aqueous Mixtures of Chemical and Physical Solvents or Ionic Liquids with ePC-SAFT vol.60, pp.17, 2013, https://doi.org/10.1021/acs.iecr.1c00176
  52. Catalytic hydrothermal conversion of CO2 captured by ammonia into formate using aluminum-sourced hydrogen at mild reaction conditions vol.97, pp.None, 2013, https://doi.org/10.1016/j.jiec.2021.03.015
  53. A Comprehensive Study of CO2 Absorption and Desorption by Choline-Chloride/Levulinic-Acid-Based Deep Eutectic Solvents vol.26, pp.18, 2013, https://doi.org/10.3390/molecules26185595
  54. Effect of combined primary and secondary amine loadings on the adsorption mechanism of CO2 and CH4 in biogas vol.420, pp.3, 2021, https://doi.org/10.1016/j.cej.2021.130294
  55. Energy and Economic Analysis of the Hydrothermal Reduction of CO2 into Formate vol.60, pp.39, 2013, https://doi.org/10.1021/acs.iecr.1c01961
  56. Review on Carbon Capture in ICE Driven Transport vol.14, pp.21, 2013, https://doi.org/10.3390/en14216865
  57. H2S-CO2 gas separation with ionic liquids on low ratio of H2S/CO2 vol.7, pp.12, 2021, https://doi.org/10.1016/j.heliyon.2021.e08611
  58. A review on the selection criteria for slow and medium kinetic solvents used in CO2 absorption for natural gas purification vol.98, pp.None, 2013, https://doi.org/10.1016/j.jngse.2021.104390
  59. A review on the selection criteria for slow and medium kinetic solvents used in CO2 absorption for natural gas purification vol.98, pp.None, 2013, https://doi.org/10.1016/j.jngse.2021.104390