References
- Oexmann, J. Int. J. Greenhouse Gas Cont. 2010, 4, 36. https://doi.org/10.1016/j.ijggc.2009.09.010
- Kim, I.; Svendsen, H. F. Ind. Eng. Chem. Res. 2007, 46, 5803. https://doi.org/10.1021/ie0616489
- Versteeg, G. F.; van Swaaij, W. P. M. Chem. Eng. Sci. 1988, 43, 573. https://doi.org/10.1016/0009-2509(88)87017-9
- Versteeg, G. F.; van Swaaij, W. P. M. Chem. Eng. Sci. 1988, 43, 587. https://doi.org/10.1016/0009-2509(88)87018-0
- Filburn, T.; Helblb, J. J.; Weiss, R. A. Ind. Eng. Chem. Res. 2005, 44, 1542. https://doi.org/10.1021/ie0495527
- Hagewiesche, D. P.; Ashour, S. S.; Al-ghawas, H. A.; Sandall, O. C. Chem. Eng. Sci. 1995, 50, 1071. https://doi.org/10.1016/0009-2509(94)00489-E
- Ramachandran, N.; Aboudheir, A.; Idem, R.; Tontiwachwuthikul, P. Ind. Eng. Chem. Res. 2006, 45, 2608. https://doi.org/10.1021/ie0505716
- Mathonat, C.; Majer, V.; Mather, A. E.; Groiler, J.-P. E. Fluid Phase Equilib. 1997, 140, 171. https://doi.org/10.1016/S0378-3812(97)00182-9
- Arcis, H.; Rodier, L.; Coxam, J.-Y. J. Chem. Thermodynamics 2007, 39, 878. https://doi.org/10.1016/j.jct.2006.11.011
- Kim, I.; Hoff, K. A.; Hessen, E. T.; Haug-Warberg, T.; Svendsen, H. F. Chem. Eng. Sci. 2009, 64, 2027. https://doi.org/10.1016/j.ces.2008.12.037
- McCann, N.; Maeder, M.; Hasse, H. Energy Procedia 2011, 4, 1542. https://doi.org/10.1016/j.egypro.2011.02.023
- Nogent, H.; Le Tacon, X. J. Loss Prev. Process Ind. 2003, 16, 133. https://doi.org/10.1016/S0950-4230(02)00109-2
- Carson, J. K.; Marsh, K. N.; Mather, A. E. J. Chem. Thermodynamics 2000, 32, 1285. https://doi.org/10.1006/jcht.2000.0680
- Chowdhury, F. A.; Okabe, H.; Shimizu, S.; Onoda, M.; Fujioka, Y. Energy Procedia 2009, 1, 1214.
- Chowdhury, F. A.; Okabe, H.; Yamada, H.; Onoda, M.; Fujioka, Y. Energy Procedia 2011, 4, 201. https://doi.org/10.1016/j.egypro.2011.01.042
Cited by
- Interaction with Various Aqueous Amine Structures vol.118, pp.25, 2014, https://doi.org/10.1021/jp503929g
- Adsorption Thermodynamics over N-Substituted/Grafted Graphanes: A DFT Study vol.30, pp.7, 2014, https://doi.org/10.1021/la4048837
- Impact of speciation on CO2 capture performance using blended absorbent containing ammonia, triethanolamine and 2-amino-2-methyl-1-propanol vol.31, pp.7, 2014, https://doi.org/10.1007/s11814-014-0030-6
- Carbon Dioxide Absorption in Triethanolamine Aqueous Solutions: Hydrodynamics and Mass Transfer vol.37, pp.3, 2014, https://doi.org/10.1002/ceat.201300603
- Capture Using Monoethanolamine in a Bubble-Column Scrubber vol.38, pp.2, 2014, https://doi.org/10.1002/ceat.201400240
- and oxiranes: a DFT endorsed study vol.50, pp.89, 2014, https://doi.org/10.1039/C4CC04195J
- Capture Efficiency, Corrosion Properties, and Ecotoxicity Evaluation of Amine Solutions Involving Newly Synthesized Ionic Liquids vol.53, pp.30, 2014, https://doi.org/10.1021/ie501897d
- Ultrasound irradiation for desorption of carbon dioxide gas from aqueous solutions of monoethanolamine vol.53, pp.7S, 2014, https://doi.org/10.7567/JJAP.53.07KE14
- Absorption Characteristics of Aqueous Solutions of Diamines: Absorption Capacity, Specific Heat Capacity, and Heat of Absorption vol.29, pp.4, 2015, https://doi.org/10.1021/ef500561a
- 1-Amine-2-propanol + Triethanolamine Aqueous Blends for Carbon Dioxide Absorption in a Bubble Reactor vol.29, pp.8, 2015, https://doi.org/10.1021/acs.energyfuels.5b00686
- capture by dry alkanolamines and an efficient microwave regeneration process vol.3, pp.12, 2015, https://doi.org/10.1039/C4TA06273F
- Carbon Dioxide Capture from Reforming Gases using Acetic Acid-mixed Chemical Absorbents vol.36, pp.7, 2015, https://doi.org/10.1002/bkcs.10365
- CO2 capture using aqueous solutions of K2CO3+2-methylpiperazine and monoethanolamine: Specific heat capacity and heat of absorption vol.33, pp.12, 2016, https://doi.org/10.1007/s11814-016-0186-3
- Reconciliation of outliers in CO2-alkanolamine-H2O datasets by robust neural network winsorization vol.28, pp.9, 2017, https://doi.org/10.1007/s00521-016-2213-z
- Capture and Mineralization in Various Alkanolamines Using Calcium Chloride vol.31, pp.1, 2017, https://doi.org/10.1021/acs.energyfuels.6b02448
- Chemical Absorption of Carbon Dioxide Using Aqueous Piperidine Derivatives vol.40, pp.12, 2017, https://doi.org/10.1002/ceat.201700375
- Calcium Carbonate Precipitation for CO2 Storage and Utilization: A Review of the Carbonate Crystallization and Polymorphism vol.5, pp.2296-598X, 2017, https://doi.org/10.3389/fenrg.2017.00017
- Absorption Capacity via Correlating Measured Electrical Conductivity in a Diethanolamine Solvent System Compared to Monoethanolamine Solvent Systems vol.62, pp.5, 2017, https://doi.org/10.1021/acs.jced.6b00862
- Effect of Carbonic Anhydrase on CO2 Absorption in Amine Solutions for CO2 Capture vol.39, pp.11, 2017, https://doi.org/10.4491/KSEE.2017.39.11.607
- Assessing the potential of nanoporous carbon adsorbents from polyethylene terephthalate (PET) to separate CO2 from flue gas vol.24, pp.3, 2018, https://doi.org/10.1007/s10450-018-9943-4
- Role of Amine Type in CO2 Separation Performance within Amine Functionalized Silica/Organosilica Membranes: A Review vol.8, pp.7, 2018, https://doi.org/10.3390/app8071032
- capture performance using piperazine (PZ) and diethylenetriamine (DETA) bi-solvent blends pp.21523878, 2019, https://doi.org/10.1002/ghg.1851
- 레미콘회수수를 이용한 액상탄산화에 관한 연구 vol.30, pp.4, 2013, https://doi.org/10.12925/jkocs.2013.30.4.770
- 입체 장애 알카놀아민 혼합 수용액에서 중탄산칼륨 결정의 냉각 반용매 결정화 vol.20, pp.4, 2013, https://doi.org/10.7464/ksct.2014.20.4.383
- CO2Absorbing Capacity of MEA vol.2015, pp.None, 2013, https://doi.org/10.1155/2015/965015
- 산업부산물의 Ca 성분 용출 특성 및 액상탄산화 반응을 이용한 침강성 탄산칼슘 제조에 관한 실험적 연구 vol.32, pp.1, 2013, https://doi.org/10.12925/jkocs.2015.32.1.116
- Excess Properties for the Binary System of Poly(ethylene glycol) 200 + 1,2-Ethanediamine at T = (303.15 to 323.15) K and the System’s Spectroscopic Studies vol.61, pp.5, 2013, https://doi.org/10.1021/acs.jced.5b00804
- 레미콘회수수를 이용한 액상탄산화 Pilot plant(System) 최적화에 관한 연구 vol.33, pp.2, 2013, https://doi.org/10.12925/jkocs.2016.33.2.239
- Performance comparison of aqueous MEA and AMP solutions for biogas upgrading vol.34, pp.3, 2013, https://doi.org/10.1007/s11814-016-0346-5
- Preparation and Characterization of Impregnated Commercial Rice Husks Activated Carbon with Piperazine for Carbon Dioxide (CO2) Capture vol.206, pp.None, 2013, https://doi.org/10.1088/1757-899x/206/1/012005
- Development of Crosslinked PEI Solid Adsorbents for CO2 Capture vol.114, pp.None, 2013, https://doi.org/10.1016/j.egypro.2017.03.1373
- 에폭사이드와 암모니아의 반응을 이용한 합성아민의 이산화탄소 흡수연구 vol.28, pp.5, 2013, https://doi.org/10.7316/khnes.2017.28.5.561
- Solvent selection and design for CO2capture - how we might have been missing the point vol.1, pp.10, 2017, https://doi.org/10.1039/c7se00404d
- Investigation of CO2 Capture in Nonaqueous Ethylethanolamine Solution Mixed with Porous Solids vol.63, pp.5, 2018, https://doi.org/10.1021/acs.jced.7b00761
- Activated Carbon Supported Amine Functionalized Ionic Liquids for CO2 Sorption vol.1123, pp.None, 2013, https://doi.org/10.1088/1742-6596/1123/1/012069
- Enhanced solubility of carbon dioxide for encapsulated ionic liquids in polymeric materials vol.354, pp.None, 2013, https://doi.org/10.1016/j.cej.2018.08.086
- Study of Equilibrium Solubility, Heat of Absorption, and Speciation of CO2 Absorption into Aqueous 2-Methylpiperazine (2MPZ) Solution vol.57, pp.51, 2018, https://doi.org/10.1021/acs.iecr.8b03104
- Preparation and CO2 breakthrough adsorption of MIL-101(Cr)-D composites vol.21, pp.5, 2019, https://doi.org/10.1007/s11051-019-4526-1
- Modeling Thermodynamic Derivative Properties and Gas Solubility of Ionic Liquids with ePC-SAFT vol.58, pp.19, 2019, https://doi.org/10.1021/acs.iecr.9b00254
- Nitrogen Sorption in a Transition Metal Complex Solution for N2 Rejection from Methane vol.58, pp.29, 2013, https://doi.org/10.1021/acs.iecr.9b01356
- Carbon capture by DEA-infused hydrogels vol.88, pp.None, 2019, https://doi.org/10.1016/j.ijggc.2019.06.005
- Foaming Dependence on the Interface Affinities of Surfactant-like Molecules vol.58, pp.43, 2013, https://doi.org/10.1021/acs.iecr.9b03105
- Fine Bubble‐based CO2 Capture Mediated by Triethanolamine Coupled to Whole Cell Biotransformation vol.91, pp.12, 2013, https://doi.org/10.1002/cite.201900113
- Fast screening of amine/physical solvent systems and mass transfer studies on efficient aqueous hybrid MEA/Sulfolane solution for postcombustion CO2 capture vol.95, pp.3, 2020, https://doi.org/10.1002/jctb.6246
- Low-Temperature Regeneration of Amines Integrated with Production of Structure-Controlled Calcium Carbonates for Combined CO2 Capture and Utilization vol.34, pp.3, 2020, https://doi.org/10.1021/acs.energyfuels.9b04339
- Comparative energy and environmental performance of 40 % and 30 % monoethanolamine at PACT pilot plant vol.95, pp.None, 2020, https://doi.org/10.1016/j.ijggc.2019.102946
- DBU-Glycerol Solution: A CO2 Absorbent with High Desorption Ratio and Low Regeneration Energy vol.54, pp.12, 2013, https://doi.org/10.1021/acs.est.0c01332
- New Experimental Data on Equilibrium CO2 Loading into Aqueous 3-Dimethyl Amino-1-propanol and 1,5-Diamino-2-methylpentane Blend: Empirical Model and CO2 Absorption Enthalpy vol.66, pp.1, 2013, https://doi.org/10.1021/acs.jced.0c00851
- Recent advances in carbon capture storage and utilisation technologies: a review vol.19, pp.2, 2021, https://doi.org/10.1007/s10311-020-01133-3
- Comparative Study on Convective and Microwave-Assisted Heating of Zeolite-Monoethanolamine Adsorbent Impregnation Process for CO2 Adsorption vol.59, pp.2, 2013, https://doi.org/10.9713/kcer.2020.59.2.260
- Predicting Vapor-Liquid Equilibria for Sour-Gas Absorption in Aqueous Mixtures of Chemical and Physical Solvents or Ionic Liquids with ePC-SAFT vol.60, pp.17, 2013, https://doi.org/10.1021/acs.iecr.1c00176
- Catalytic hydrothermal conversion of CO2 captured by ammonia into formate using aluminum-sourced hydrogen at mild reaction conditions vol.97, pp.None, 2013, https://doi.org/10.1016/j.jiec.2021.03.015
- A Comprehensive Study of CO2 Absorption and Desorption by Choline-Chloride/Levulinic-Acid-Based Deep Eutectic Solvents vol.26, pp.18, 2013, https://doi.org/10.3390/molecules26185595
- Effect of combined primary and secondary amine loadings on the adsorption mechanism of CO2 and CH4 in biogas vol.420, pp.3, 2021, https://doi.org/10.1016/j.cej.2021.130294
- Energy and Economic Analysis of the Hydrothermal Reduction of CO2 into Formate vol.60, pp.39, 2013, https://doi.org/10.1021/acs.iecr.1c01961
- Review on Carbon Capture in ICE Driven Transport vol.14, pp.21, 2013, https://doi.org/10.3390/en14216865
- H2S-CO2 gas separation with ionic liquids on low ratio of H2S/CO2 vol.7, pp.12, 2021, https://doi.org/10.1016/j.heliyon.2021.e08611
- A review on the selection criteria for slow and medium kinetic solvents used in CO2 absorption for natural gas purification vol.98, pp.None, 2013, https://doi.org/10.1016/j.jngse.2021.104390
- A review on the selection criteria for slow and medium kinetic solvents used in CO2 absorption for natural gas purification vol.98, pp.None, 2013, https://doi.org/10.1016/j.jngse.2021.104390