DOI QR코드

DOI QR Code

Diffusion of CO2 Molecules in Polyethylene Terephthalate/Polylactide Blends Estimated by Molecular Dynamics Simulations

  • Liao, Li-Qiong (School of Materials Science and Engineering, North University of China) ;
  • Fu, Yi-Zheng (School of Materials Science and Engineering, North University of China) ;
  • Liang, Xiao-Yan (School of Materials Science and Engineering, North University of China) ;
  • Mei, Lin-Yu (School of Materials Science and Engineering, North University of China) ;
  • Liu, Ya-Qing (School of Materials Science and Engineering, North University of China)
  • Received : 2012.09.21
  • Accepted : 2012.12.05
  • Published : 2013.03.20

Abstract

Molecular dynamics (MD) simulations have been used to study the diffusion behavior of small gas molecules ($CO_2$) in polyethylene terephthalate (PET)/polylactide (PLA) blends. The Flory-Huggins interaction parameters (${\chi}$) determined from the cohesive energy densities are smaller than the critical value of Flory-Huggins interaction parameters (${\chi}_{critical}$), and that indicates the good compatibility of PET/PLA blends. The diffusion coefficients of $CO_2$ are determined via MD simulations at 298 K. That the order of diffusion coefficients is correlated with the availably fractional free volume (FFV) of $CO_2$ in the PET/PLA blends means that the FFV plays a vital role in the diffusion behavior of $CO_2$ molecules in PET/PLA blends. The slopes of the log (MSD) as a function of log (t) are close to unity over the entire composition range of PET/PLA blends, which confirmes the feasibility of MD approach reaches the normal diffusion regime of $CO_2$ in PET/PLA blends.

Keywords

References

  1. Wang, Q. F.; Keffer, D. J.; Nicholson, D. M.; Thomas, J. B. Macromolecules 2010, 43, 10722. https://doi.org/10.1021/ma102084a
  2. Welle, F. Resour. Conserv. Recy. 2011, 51, 865.
  3. Chen, H. P.; Pyda, M.; Cebe, P. Thermochim. Acta 2009, 492, 61. https://doi.org/10.1016/j.tca.2009.04.023
  4. Auras, R.; Harte, B.; Selke, S. Macromol. Biosci. 2004, 4, 835. https://doi.org/10.1002/mabi.200400043
  5. Nampoothiri, K. M.; Nair, N. R.; John, R. P. Bioresour. Technol. 2010, 101, 8493. https://doi.org/10.1016/j.biortech.2010.05.092
  6. Jing, J.; Qiao, Q. A.; Jin, Y. Q.; Ma, C. H.; Cai, H. L.; Meng, Y. F.; Cai, Z. T.; Feng, D. C. Chin. J. Chem. 2012, 30, 133. https://doi.org/10.1002/cjoc.201180454
  7. Arenaza, I. M.; Meaurio, E.; Coto, B.; Sarasua, J. R. Polymer 2010, 51, 4431. https://doi.org/10.1016/j.polymer.2010.07.018
  8. Luo, Z. L.; Jiang, J. W. Polymer 2010, 51, 291. https://doi.org/10.1016/j.polymer.2009.11.024
  9. Chen, Y.; Liu, Q. L.; Zhu, A. M.; Zhang, Q. G.; Wu, J. Y. J. Membr. Sci. 2010, 348, 204. https://doi.org/10.1016/j.memsci.2009.11.002
  10. Mozaffari, F.; Eslami, H.; Moghadasi, J. Polymer 2010, 51, 300. https://doi.org/10.1016/j.polymer.2009.10.072
  11. Jawalkar, S. S.; Aminabhavi, T. M. Polym. Int. 2007, 56, 928. https://doi.org/10.1002/pi.2226
  12. Harmandaris, V. A.; Adhikari, N. P.; van der Vegt, N. F. A.; Kremer, K. Macromolecules 2007, 40, 7026. https://doi.org/10.1021/ma070201o
  13. Harmandaris, V. A.; Angelopoulou, D.; Mavrantzas, V. G.; Theodorou, D. N. J. Chem. Phys. 2002, 116, 7656. https://doi.org/10.1063/1.1466472
  14. Muller-Plathe, F. J. Chem. Phys. 1991, 94, 3192. https://doi.org/10.1063/1.459788
  15. Takeuchi, H.; Roe, R. J.; Mark, J. E. J. Chem. Phys. 1990, 93, 9042. https://doi.org/10.1063/1.459194
  16. Pavel, D.; Shanks, R. Polymer 2005, 46, 6135. https://doi.org/10.1016/j.polymer.2005.05.085
  17. Pan, F. S.; Ma, J.; Cui, L.; Jiang, Z. Y. Chem. Eng. Sci. 2009, 64, 5192. https://doi.org/10.1016/j.ces.2009.08.026
  18. Pan, F. S.; Peng, F. B.; Lu, L. Y.; Wang, J. T.; Jiang, Z. Y. Chem. Eng. Sci. 2008, 63, 1072. https://doi.org/10.1016/j.ces.2007.10.034
  19. Liao, L. Q.; Fu, Y. Z.; Liang, X. Y.; Liu, Y. Q. Polym. Mat. Sci. Eng. 2012, 28, 170.
  20. Pavel, D.; Shanks, R. Polymer 2003, 44, 6713. https://doi.org/10.1016/j.polymer.2003.08.016
  21. McGonigle, E. A.; Liggat, J. J.; Pethrick, R. A.; Jenkins, S. D.; Daly, J. H.; Hayward, D. Polymer 2001, 42, 2413. https://doi.org/10.1016/S0032-3861(00)00615-7
  22. Sun, H. J. Phys. Chem. B 1998, 102, 7338. https://doi.org/10.1021/jp980939v
  23. Mohanty, S.; Nando, G. B. Polymer 1996, 37, 5387. https://doi.org/10.1016/S0032-3861(96)00391-6
  24. Fang, Z. P. Molecular Dynamics Simulation on Silicon Rubber Pervaporation Membranes and their Diffusion Properties; Tianjin University, Tianjin, 2008.
  25. Case, F. H.; Honeycutt, J. D. Trends Polym. Sci. 1994, 2, 259.
  26. Jawalkar, S. S.; Aminabhavi, T. M. Polymer 2006, 47, 8061. https://doi.org/10.1016/j.polymer.2006.09.030
  27. Lu, C. H.; Ni, S. J.; Chen, W. K.; Liao, J. S.; Zhang, C. J. Comput. Mater. Sci. 2010, 49, S65. https://doi.org/10.1016/j.commatsci.2010.01.044
  28. Tocci, E.; Bellacchio, E.; Russo, N.; Drioli, E. J. Membr. Sci. 2002, 206, 389. https://doi.org/10.1016/S0376-7388(01)00784-0
  29. Pant, P. V. K.; Boyd, R. E. Macromolecules 1992, 25, 494. https://doi.org/10.1021/ma00027a079
  30. Okuji, S.; Sekiya, M.; Nakabayashi, M.; Endo, H.; Sakudo, N.; Nagai, K. Instrum. Methods Phys. Res., Sect. B 2006, 242, 353. https://doi.org/10.1016/j.nimb.2005.08.153
  31. Komatsuka, T.; Kusakabe, A.; Nagai, K. Desalination 2008, 234, 212. https://doi.org/10.1016/j.desal.2007.09.088
  32. Liu, Q. L.; Huang, Y. J. Phys. Chem. B 2006, 110, 17375. https://doi.org/10.1021/jp063174x

Cited by

  1. Molecular simulation on carbon dioxide fixation routes towards synthesis of precursors for innovative urethanes vol.3, pp.1, 2015, https://doi.org/10.1186/s40563-014-0028-7
  2. Molecular dynamics simulation of gas diffusion behavior in polyethylene terephthalate/aluminium/polyethylene interface vol.24, pp.9, 2017, https://doi.org/10.1080/09276440.2017.1302733
  3. Molecular dynamics simulation of three plastic additives’ diffusion in polyethylene terephthalate vol.34, pp.6, 2017, https://doi.org/10.1080/19440049.2017.1310398
  4. Molecular Dynamics Simulation on Diffusion of Five Kinds of Chemical Additives in Polypropylene pp.08943214, 2018, https://doi.org/10.1002/pts.2314