DOI QR코드

DOI QR Code

Synthesis and DNA-binding Properties of Trehalose-tethered Monomeric and Dimeric Berberines

  • Wang, Yong-Min (School of Pharmaceutical Sciences, Southern Medical University) ;
  • Zhou, Chun-Qiong (School of Pharmaceutical Sciences, Southern Medical University) ;
  • Chen, Jin-Xiang (School of Pharmaceutical Sciences, Southern Medical University) ;
  • Chen, Wen-Hua (School of Pharmaceutical Sciences, Southern Medical University)
  • Received : 2012.11.13
  • Accepted : 2012.12.05
  • Published : 2013.03.20

Abstract

Trehalose-tethered monomeric and dimeric berberines were synthesized in 50% and 30% from the reaction of berberrubine with 6-tosyl-${\alpha}$,${\alpha}^{\prime}$-trehalose and 6,6'-ditosyl-${\alpha}$,${\alpha}^{\prime}$-trehalose, respectively, and fully characterized by MS (HR and ESI) and NMR ($^1H$, $^{13}C$, COSY and HSQC). Spectrophotometric and spectrofluorimetric titrations indicated that compared with berberine, trehalose-tethered monomeric berberine had comparable DNA-binding affinity toward calf-thymus DNA, whereas trehalose-spaced dimeric berberine exhibited higher DNA-binding affinity. The potential application of these conjugates is also briefly discussed.

Keywords

References

  1. Uhlmann, E.; Peyman, A. Chem. Rev. 1990, 90, 543. https://doi.org/10.1021/cr00102a001
  2. Choi, S.-K. Synthetic Multivalent Molecules-Concepts and Biomedical Applications; Wiley-Interscience Inc.: Hoboken, NJ, 2004; p 286-306.
  3. Toshima, K.; Ouchi, H.; Okazaki, Y.; Kano, T.; Moriguchi, M.; Asai, A.; Matsumura, S. Angew. Chem. Int. Ed. Engl. 1997, 36, 2748. https://doi.org/10.1002/anie.199727481
  4. Toshima, K.; Takano, R.; Maeda, Y.; Suzuki, M.; Asai, A.; Matsumura, S. Angew. Chem. Int. Ed. 1999, 38, 3733. https://doi.org/10.1002/(SICI)1521-3773(19991216)38:24<3733::AID-ANIE3733>3.0.CO;2-W
  5. Grummit, A. R.; Harding, M. M.; Anderberg, P. I.; Rodger, A. Eur. J. Org. Chem. 2003, 63.
  6. Temperini, C.; Cirilli, M.; Aschi, M.; Ughetto, G. Bioorg. Med. Chem. 2005, 13, 1673. https://doi.org/10.1016/j.bmc.2004.12.007
  7. He, H.; Bai, L.-P.; Jiang, Z.-H. Bioorg. Med. Chem. Lett. 2012, 22, 1582. https://doi.org/10.1016/j.bmcl.2011.12.143
  8. Pang, J.-Y.; Qin, Y.; Chen, W.-H.; Luo, G.-A.; Jiang, Z.-H. Bioorg. Med. Chem. 2005, 13, 5835. https://doi.org/10.1016/j.bmc.2005.05.048
  9. Cui, J.-S.; Xu, F.; Pang, J.-Y.; Chen, W.-H.; Jiang, Z.-H. Chem. Biodiv. 2010, 7, 2908.
  10. Pang, J.-Y.; Long, Y.-H.; Chen, W.-H.; Jiang, Z.-H. Bioorg. Med. Chem. Lett. 2007, 17, 1018. https://doi.org/10.1016/j.bmcl.2006.11.037
  11. Chen, J.-X.; Lin, W.-E.; Chen, M.- Z.; Zhou, C.-Q.; Lin, Y.-L.; Chen, M.; Jiang, Z.-H.; Chen, W.-H. Bioorg. Med. Chem. Lett. 2012, 22, 7056. https://doi.org/10.1016/j.bmcl.2012.09.087
  12. Chen, W.-H.; Qin, Y.; Cai, Z.; Chan, C.-L.; Luo, G.-A.; Jiang, Z.-H. Bioorg. Med. Chem. 2005, 13, 1859. https://doi.org/10.1016/j.bmc.2004.10.049
  13. Chen, W.-H.; Chan, C.-L.; Cai, Z.; Luo, G.-A.; Jiang, Z.-H. Bioorg. Med. Chem. Lett. 2004, 14, 4955. https://doi.org/10.1016/j.bmcl.2004.07.037
  14. Long, Y.-H.; Bai, L.-P.; Qin, Y.; Pang, J.-Y.; Chen, W.-H.; Cai, Z.; Xu, Z.-L.; Jiang, Z.-H. Bioorg. Med. Chem. 2006, 14, 4670. https://doi.org/10.1016/j.bmc.2006.03.004
  15. Qin, Y.; Pang, J.-Y.; Chen, W.-H.; Cai, Z.; Jiang, Z.-H. Bioorg. Med. Chem. 2006, 14, 25. https://doi.org/10.1016/j.bmc.2005.07.069
  16. Chen, W.-H.; Pang, J.-Y.; Qin, Y.; Peng, Q.; Cai, Z.; Jiang, Z.-H. Bioorg. Med. Chem. Lett. 2005, 15, 2689. https://doi.org/10.1016/j.bmcl.2004.10.098
  17. Bodiwala, H. S.; Sabde, S.; Mitra, D.; Bhutani, K. K.; Singh, I. P. Eur. J. Med. Chem. 2011, 46, 1045. https://doi.org/10.1016/j.ejmech.2011.01.016
  18. Wang, M.; Tu, P.-F.; Xu, Z.-D.; Yu, X.-L.; Yang, M. Helv. Chim. Acta 2003, 86, 2637. https://doi.org/10.1002/hlca.200390213
  19. Qin, Y.; Chen, W.-H.; Pang, J.-Y.; Zhao, Z.-Z.; Liu, L.; Jiang, Z.-H. Chem. Biodiv. 2007, 4, 145. https://doi.org/10.1002/cbdv.200790019
  20. Cucinotta, V.; Grasso, G.; Vecchio, G. J. Incl. Phenom. Mol. Recognit. Chem. 1998, 31, 43. https://doi.org/10.1023/A:1007994324973
  21. Ihmels, H.; Faulhaber, K.; Viola, G.; Wennemers, H. Evaluation of the DNA-binding Properties of Cationic Dyes by Absorption and Emission Spectroscopy; In Highlights in Bioorganic Chemistry: Methods and Applications; Schmuck, C., Wennemers, H., Eds.; Wiley-VCH: Weinheim; 2004; pp 172-190.
  22. Chrisey, L. A.; Bonjar, G. H. S.; Hecht, S. M. J. Am. Chem. Soc. 1988, 110, 644. https://doi.org/10.1021/ja00210a080
  23. Mazzini, S.; Bellucci, M. C.; Mondelli, R. Bioorg. Med. Chem. 2003, 11, 505. https://doi.org/10.1016/S0968-0896(02)00466-2
  24. Huang, S.-H.; Li, S.; Pang, J.-Y.; Chen, W.-H. Acta Scientiarum Natralium Universitatis Sunyatseni 2009, 48(2), 58.

Cited by

  1. ) phthalocyanines as new potential anticancer agents vol.45, pp.36, 2016, https://doi.org/10.1039/C6DT02720B