DOI QR코드

DOI QR Code

Thermodynamics of Partitioning of Substance P in Isotropic Acidic Bicelles

  • Baek, Seung Bin (Department of Chemistry, Pohang University of Science and Technology) ;
  • Lee, Hyeong Ju (Department of Chemistry, Pohang University of Science and Technology) ;
  • Lee, Hee Cheon (Department of Chemistry, Pohang University of Science and Technology) ;
  • Kim, Chul (Department of Chemistry, Hannam University)
  • Received : 2012.04.30
  • Accepted : 2012.12.05
  • Published : 2013.03.20

Abstract

The temperature dependence of the partition coefficients of a neuropeptide, substance P (SP), in isotropic acidic bicelles was investigated by using a pulsed field gradient nuclear magnetic resonance diffusion technique. The addition of negatively charged dimyristoylphosphatidylserine to the neutral bicelle changed the SP partitioning a little, which implies that the hydrophobic interaction between the hydrophobic residues of SP and the acyl chains of lipid molecules is the major interaction while the electrostatic interaction is minor in SP binding in a lipid membrane. From the temperature dependence of the partition coefficients, thermodynamic functions were calculated. The partitioning of SP into the acidic bicelles is enthalpy-driven, as it is for small unilamellar vesicles and dodecylphosphocholine micelles, while peptide partitioning into a large unilamellar vesicle is entropy-driven. This may mean that the size of lipid membranes is a more important factor for peptide binding than the surface curvature and surface charge density.

Keywords

References

  1. Seelig, J.; Ganz, P. Biochemistry 1991, 30, 9354. https://doi.org/10.1021/bi00102a031
  2. Seelig, A.; Macdonald, P. M. Biochemistry 1989, 28, 2490. https://doi.org/10.1021/bi00432a021
  3. Pellegrini, M.; Mierke, D. F. Biopolymers-Peptide Science Section 1999, 51, 208. https://doi.org/10.1002/(SICI)1097-0282(1999)51:3<208::AID-BIP4>3.0.CO;2-U
  4. Duplaa, H.; Convert, O.; Sautereau, A. M.; Tocanne, J. F.; Chassaing, G. Biochimica et Biophysica Acta-Biomembranes 1992, 1107, 12. https://doi.org/10.1016/0005-2736(92)90323-E
  5. Whitehead, T. L.; Jones, L. M.; Hicks, R. P. J. Biomol. Struct. Dyn. 2004, 21, 567. https://doi.org/10.1080/07391102.2004.10506949
  6. Wong, T. C.; Gao, X. Biopolymers 1998, 45, 395. https://doi.org/10.1002/(SICI)1097-0282(19980415)45:5<395::AID-BIP7>3.0.CO;2-G
  7. Keire, D. A.; Fletcher, T. G. Biophys. J. 1996, 70, 1716. https://doi.org/10.1016/S0006-3495(96)79734-5
  8. Auge, S.; Bersch, B.; Tropis, M.; Milon, A. Biopolymers 2000, 54, 297. https://doi.org/10.1002/1097-0282(20001015)54:5<297::AID-BIP10>3.0.CO;2-9
  9. Ram, P.; Prestegard, J. H. BBA-Biomembranes 1988, 940, 289. https://doi.org/10.1016/0005-2736(88)90203-9
  10. Sanders Ii, C. R.; Schwonek, J. P. Biochemistry 1992, 31, 8898. https://doi.org/10.1021/bi00152a029
  11. Sanders Ii, C. R.; Hare, B. J.; Howard, K. P.; Prestegard, J. H. Prog. Nucl. Magn. Reson. Spectrosc. 1994, 26, 421. https://doi.org/10.1016/0079-6565(94)80012-X
  12. Vold, R. R.; Prosser, R. S.; Deese, A. J. J. Biomol. NMR 1997, 9, 329. https://doi.org/10.1023/A:1018643312309
  13. Andersson, A.; Mäler, L. J. Biomol. NMR 2002, 24, 103. https://doi.org/10.1023/A:1020902915969
  14. Tjandra, N.; Bax, A. Science 1997, 278, 1111. https://doi.org/10.1126/science.278.5340.1111
  15. Whitehead, T. L.; Jones, L. M.; Hicks, R. P. Biopolymers 2001, 58, 593. https://doi.org/10.1002/1097-0282(200106)58:7<593::AID-BIP1033>3.0.CO;2-P
  16. Beschiaschvili, G.; Seelig, J. Biochemistry 1992, 31, 10044. https://doi.org/10.1021/bi00156a026
  17. Kim, C.; Baek, S. B.; Kim, D. H.; Lim, S. C.; Lee, H. J.; Lee, H. C. J. Pept. Sci. 2009, 15, 353. https://doi.org/10.1002/psc.1121
  18. Seelig, J.; Nebel, S.; Ganz, P.; Bruns, C. Biochemistry 1993, 32, 9714. https://doi.org/10.1021/bi00088a025
  19. Wieprecht, T.; Beyermann, M.; Seelig, J. Biophys. Chem. 2002, 96, 191. https://doi.org/10.1016/S0301-4622(02)00025-X
  20. Harrison, S.; Geppetti, P. Int. J. Biochem. Cell Biol. 2001, 33, 555. https://doi.org/10.1016/S1357-2725(01)00031-0
  21. Hokfelt, T.; Pernow, B.; Wahren, J. J. Intern. Med. 2001, 249, 27.
  22. Sargent, D. F.; Schwyzer, R. Proc. Natl. Acad. Sci. USA 1986, 83, 5774. https://doi.org/10.1073/pnas.83.16.5774
  23. Seelig, A.; Alt, T.; Lotz, S. Biochemistry 1996, 35, 4365. https://doi.org/10.1021/bi952434q
  24. Struppe, J.; Whiles, J. A.; Void, R. R. Biophys. J. 2000, 78, 281. https://doi.org/10.1016/S0006-3495(00)76591-X
  25. Gao, X.; Wong, T. C. Biopolymers 1999, 50, 555. https://doi.org/10.1002/(SICI)1097-0282(19991015)50:5<555::AID-BIP9>3.0.CO;2-X
  26. Jerschow, A.; Muller, N. J. Mag. Res. 1997, 125, 372. https://doi.org/10.1006/jmre.1997.1123
  27. Waldeck, A. R.; Kuchel, P. W.; Lennon, A. J.; Chapman, B. E. Prog. Nucl. Magn. Reson. Spectrosc. 1997, 30, 39. https://doi.org/10.1016/S0079-6565(96)01034-5
  28. Andersson, A.; Almqvist, J.; Hagn, F.; Maler, L. Biochimica et Biophysica Acta - Biomembranes 2004, 1661, 18. https://doi.org/10.1016/j.bbamem.2003.11.014
  29. Baldwin, R. L. Proc. Natl. Acad Sci. USA 1986, 83, 8069. https://doi.org/10.1073/pnas.83.21.8069
  30. Arnold, A.; Labrot, T.; Oda, R.; Dufourc, E. J. Biophys. J. 2002, 83, 2667. https://doi.org/10.1016/S0006-3495(02)75276-4
  31. Luchette, P. A.; Vetman, T. N.; Prosser, R. S.; Hancock, R. E. W.; Nieh, M. P.; Glinka, C. J. et al. Biochimica et Biophysica Acta - Biomembranes 2001, 1513, 83. https://doi.org/10.1016/S0005-2736(01)00358-3
  32. Glover, K. J.; Whiles, J. A.; Wu, G.; Yu, N. J.; Deems, R.; Struppe, J. O. et al. Biophys. J. 2001, 81, 2163. https://doi.org/10.1016/S0006-3495(01)75864-X
  33. Baek, S. B.; Lim, S. C.; Lee, H. J.; Lee, H. C.; Kim, C. Bull. Korean Chem. Soc. 2011, 32, 3702. https://doi.org/10.5012/bkcs.2011.32.10.3702