References
- Hamberg, I.; Granqvist, C. G. J. Appl. Phys. 1986, 60, R123. https://doi.org/10.1063/1.337534
- Adachi, K.; Miratsu, M.; Asahi, T. J. Mater. Res. 2010, 25, 510. https://doi.org/10.1557/JMR.2010.0075
- Okada, M.; Yamada, Y.; Jin, P.; Tazawa, M.; Yoshimura, K. Thin Solid Films 2003, 442, 217. https://doi.org/10.1016/S0040-6090(03)00985-4
- Kanehara, K.; Koike, H.; Yoshinaga, T.; Teranishi, T. J. Am. Chem. Soc. 2009, 131, 17736. https://doi.org/10.1021/ja9064415
- Takeda, H.; Adachi, K. J. Am. Ceram. Soc. 2007, 90, 4059.
- Carmody, J.; Selkowitz, S.; Heschong, L. Residential Windows: A Guide to New Technologies and Energy Performance, 1st ed.; W. W. Norton & Company: New York, 1996.
- Green, M.; Travlos, A. Philos. Mag. B 1985, 51, 501. https://doi.org/10.1080/13642818508244483
- Lynch, D. W.; Rosei, R.; Weaver, J. H.; Olson, C. G. J. Solid State Chem. 1973, 8, 242. https://doi.org/10.1016/0022-4596(73)90092-3
- Schirmer, O. F.; Wittwer, W.; Baur, G.; Brandt, G. J. Electrochem. Soc. 1977, 124, 749. https://doi.org/10.1149/1.2133399
- Takeda, H.; Adachi, K. J. Am. Ceram. Soc. 2007, 90, 4059.
- Guo, C.; Yin, S.; Zhang, P.; Yan, M.; Adachi, K.; Chonan, T.; Sato, T. J. Mater. Chem. 2010, 20, 8227. https://doi.org/10.1039/c0jm01972k
- Guo, C.; Yin, S.; Huang, L.; Yang, L.; Sato, T. Chem. Commun. 2011, 47, 8853. https://doi.org/10.1039/c1cc12711j
- Guo, C.; Yin, S.; Yan, M.; Sato, T. J. Mater. Chem. 2011, 21, 5099. https://doi.org/10.1039/c0jm04379f
- Liu, J.-X.; Ando, Y.; Dong, X.-L.; Shi, F.; Yin, S.; Adachi, K.; Chonan, T.; Tanaka, A.; Sato, T. J. Solid State Chem. 2010, 183, 2456. https://doi.org/10.1016/j.jssc.2010.08.017
- Raj, S.; Matsui, H.; Souma, S.; Sato, T.; Takahashi, T.; Chakraborty, A.; Sarma, D. D.; Mahadevan, P.; Oishi, S.; McCarroll, W. H.; Greenblatt, M. Phys. Rev. B 2007, 75, 155116. https://doi.org/10.1103/PhysRevB.75.155116
- Hgg, G. Nature 1935, 3421, 874.
- Zhong, Q.; Colbow, K. Thin Solid Films 1991, 196, 305. https://doi.org/10.1016/0040-6090(91)90374-7
Cited by
- thin film via oxygen-vacancy-induced effect for energy efficient applications vol.19, pp.28, 2017, https://doi.org/10.1039/C7CE00896A
- Control over Growth of Hexagonal Sodium Tungstate Nanorods by Poly(styrenesulfonate) vol.42, pp.10, 2013, https://doi.org/10.1246/cl.130526
- Facile fabrication of high-efficiency near-infrared absorption film with tungsten bronze nanoparticle dense layer vol.9, pp.1, 2013, https://doi.org/10.1186/1556-276x-9-294
- Facile solvothermal synthesis of NIR absorbing CsxWO3 nanorods by benzyl alcohol route vol.2, pp.1, 2015, https://doi.org/10.1088/2053-1591/2/1/015016
- Facile synthesis and structure characterization of hexagonal tungsten bronzes crystals vol.465, pp.None, 2017, https://doi.org/10.1016/j.jcrysgro.2017.02.044
- Recent Advances in Tungsten-Oxide-Based Materials and Their Applications vol.6, pp.None, 2013, https://doi.org/10.3389/fmats.2019.00049
- Anisotropic plasmons due to carrier electrons in Cs-doped hexagonal WO3 studied by momentum transfer resolved electron energy-loss spectroscopy vol.126, pp.18, 2013, https://doi.org/10.1063/1.5115068
- Alkali metal tungsten bronze-doped energy-saving glasses for near-infrared shielding applications vol.47, pp.22, 2013, https://doi.org/10.1016/j.ceramint.2021.07.286