DOI QR코드

DOI QR Code

Near Infrared Shielding Properties of Quaternary Tungsten Bronze Nanoparticle Na0.11Cs0.22WO3

  • Moon, Kyunghwan (School of Chemical Engineering and Materials Science, Chung-Ang University) ;
  • Cho, Jin-Ju (School of Chemical Engineering and Materials Science, Chung-Ang University) ;
  • Lee, Ye-Bin (School of Chemical Engineering and Materials Science, Chung-Ang University) ;
  • Yoo, Pil J. (School of Chemical Engineering and SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University) ;
  • Bark, Chung Wung (Department of Electrical Engineering, Gachon University) ;
  • Park, Juhyun (School of Chemical Engineering and Materials Science, Chung-Ang University)
  • Received : 2012.11.09
  • Accepted : 2012.12.04
  • Published : 2013.03.20

Abstract

Reduced tungsten bronze nanoparticles of ternary and quaternary compounds were prepared by adding sodium and cesium to crystal structures of tungsten trioxides ($Na_xCs_{0.33-x}WO_3$, x = 0, 0.11) while maintaining the overall alkali metal fraction at 0.33, in an attempt to control near infrared (NIR) shielding property in the particular wavelength range of 780 to 1200 nm. The structure and composition analysis of the quaternary compound, $Na_{0.11}Cs_{0.22}WO_3$, revealed that 93.1% of the hexagonal phase was formed, suggesting that both alkali metals were mainly inserted in hexagonal channel. The NIR shielding property for $Na_{0.11}Cs_{0.22}WO_3$ was remarkable, as this material demonstrated efficient transmittance of visible light up to 780 nm and enhancement in NIR shielding because of the blue-shifted absorption maximum in comparison to $Cs_{0.33}WO_3$.

Keywords

References

  1. Hamberg, I.; Granqvist, C. G. J. Appl. Phys. 1986, 60, R123. https://doi.org/10.1063/1.337534
  2. Adachi, K.; Miratsu, M.; Asahi, T. J. Mater. Res. 2010, 25, 510. https://doi.org/10.1557/JMR.2010.0075
  3. Okada, M.; Yamada, Y.; Jin, P.; Tazawa, M.; Yoshimura, K. Thin Solid Films 2003, 442, 217. https://doi.org/10.1016/S0040-6090(03)00985-4
  4. Kanehara, K.; Koike, H.; Yoshinaga, T.; Teranishi, T. J. Am. Chem. Soc. 2009, 131, 17736. https://doi.org/10.1021/ja9064415
  5. Takeda, H.; Adachi, K. J. Am. Ceram. Soc. 2007, 90, 4059.
  6. Carmody, J.; Selkowitz, S.; Heschong, L. Residential Windows: A Guide to New Technologies and Energy Performance, 1st ed.; W. W. Norton & Company: New York, 1996.
  7. Green, M.; Travlos, A. Philos. Mag. B 1985, 51, 501. https://doi.org/10.1080/13642818508244483
  8. Lynch, D. W.; Rosei, R.; Weaver, J. H.; Olson, C. G. J. Solid State Chem. 1973, 8, 242. https://doi.org/10.1016/0022-4596(73)90092-3
  9. Schirmer, O. F.; Wittwer, W.; Baur, G.; Brandt, G. J. Electrochem. Soc. 1977, 124, 749. https://doi.org/10.1149/1.2133399
  10. Takeda, H.; Adachi, K. J. Am. Ceram. Soc. 2007, 90, 4059.
  11. Guo, C.; Yin, S.; Zhang, P.; Yan, M.; Adachi, K.; Chonan, T.; Sato, T. J. Mater. Chem. 2010, 20, 8227. https://doi.org/10.1039/c0jm01972k
  12. Guo, C.; Yin, S.; Huang, L.; Yang, L.; Sato, T. Chem. Commun. 2011, 47, 8853. https://doi.org/10.1039/c1cc12711j
  13. Guo, C.; Yin, S.; Yan, M.; Sato, T. J. Mater. Chem. 2011, 21, 5099. https://doi.org/10.1039/c0jm04379f
  14. Liu, J.-X.; Ando, Y.; Dong, X.-L.; Shi, F.; Yin, S.; Adachi, K.; Chonan, T.; Tanaka, A.; Sato, T. J. Solid State Chem. 2010, 183, 2456. https://doi.org/10.1016/j.jssc.2010.08.017
  15. Raj, S.; Matsui, H.; Souma, S.; Sato, T.; Takahashi, T.; Chakraborty, A.; Sarma, D. D.; Mahadevan, P.; Oishi, S.; McCarroll, W. H.; Greenblatt, M. Phys. Rev. B 2007, 75, 155116. https://doi.org/10.1103/PhysRevB.75.155116
  16. Hgg, G. Nature 1935, 3421, 874.
  17. Zhong, Q.; Colbow, K. Thin Solid Films 1991, 196, 305. https://doi.org/10.1016/0040-6090(91)90374-7

Cited by

  1. thin film via oxygen-vacancy-induced effect for energy efficient applications vol.19, pp.28, 2017, https://doi.org/10.1039/C7CE00896A
  2. Control over Growth of Hexagonal Sodium Tungstate Nanorods by Poly(styrenesulfonate) vol.42, pp.10, 2013, https://doi.org/10.1246/cl.130526
  3. Facile fabrication of high-efficiency near-infrared absorption film with tungsten bronze nanoparticle dense layer vol.9, pp.1, 2013, https://doi.org/10.1186/1556-276x-9-294
  4. Facile solvothermal synthesis of NIR absorbing CsxWO3 nanorods by benzyl alcohol route vol.2, pp.1, 2015, https://doi.org/10.1088/2053-1591/2/1/015016
  5. Facile synthesis and structure characterization of hexagonal tungsten bronzes crystals vol.465, pp.None, 2017, https://doi.org/10.1016/j.jcrysgro.2017.02.044
  6. Recent Advances in Tungsten-Oxide-Based Materials and Their Applications vol.6, pp.None, 2013, https://doi.org/10.3389/fmats.2019.00049
  7. Anisotropic plasmons due to carrier electrons in Cs-doped hexagonal WO3 studied by momentum transfer resolved electron energy-loss spectroscopy vol.126, pp.18, 2013, https://doi.org/10.1063/1.5115068
  8. Alkali metal tungsten bronze-doped energy-saving glasses for near-infrared shielding applications vol.47, pp.22, 2013, https://doi.org/10.1016/j.ceramint.2021.07.286