DOI QR코드

DOI QR Code

Rapid Heating Concepts in Sintering

  • German, Randall M. (College of Engineering, San Diego State University)
  • Received : 2013.03.28
  • Accepted : 2013.04.16
  • Published : 2013.04.28

Abstract

Powder metallurgy applied rapid heating to sintering starting year 1900. Since 1970 the study has intensified. Now rapid sintering concepts embrace a spectrum of options ranging from dunk cycles to microwave, induction, exothermic, electric field, and spark approaches. Most of the efforts are targeting reduced microstructure coarsening during sintering, although reduced material decomposition is another common goal. The efforts are impressive for simple shapes and success metrics such a small grain size after densification. Several barriers need to be removed prior to application in powder metallurgy commercial sintering. Rapid heating research needs to focus on significant property gains, accurate product dimensions, and lower costs. So far each property gain obtained with rapid heating is matched by traditional sintering and composition changes. Several examples are cited to show the goals for the next round of innovations.

Keywords

References

  1. W. L. Voelker: U. S. Patent 660,475, issued 23 October 1900.
  2. W. L. Voelker: GB Patent 6149, issued 10 February 1900.
  3. P. Schwarzkopf: Powder Metallurgy Its Physics and Production, Macmillan, New York, NY, 1947.
  4. W. D. Coolidge: U. S. Patent 1,077,674, issued 5 November 1913.
  5. F. V. Lenel: Trans. TMS-AIME, 203 (1955) 158.
  6. J. Li, Y. Ye: J. Amer. Ceram. Soc., 89 (2006) 139. https://doi.org/10.1111/j.1551-2916.2005.00654.x
  7. Z. A. Munir, U. Anselmi-Tamburini and M. Ohyanagi: J. Mater. Sci., 41 (2006) 763. https://doi.org/10.1007/s10853-006-6555-2
  8. S. Grasso, Y. Sakka and G. Maizza: Sci. Tech. Adv. Mater., 10 (2010) 053001.
  9. P. Vergnon, M. Astier and S. J. Teichner: Fine Particles, W. E. Kuhn (ed.), Electrochemical Society, Princeton, NJ, 1974, 299-307.
  10. M. Cologna, J. S. C. Francis and R. Raj: J. Euro. Ceram. Soc., 31 (2011) 2827. https://doi.org/10.1016/j.jeurceramsoc.2011.07.004
  11. D. Beruto, R. Botter and A. W. Searcy: J. Amer. Ceram. Soc., 72 (1989) 232. https://doi.org/10.1111/j.1151-2916.1989.tb06106.x
  12. A. W. Searcy and D. Beruto: Science of Ceramics, 14, D. Taylor (ed.), Institute of Ceramics, Stokes-on-Trent, UK (1988) 1.
  13. C. S. Morgan: High Temp. - High Press., 3 (1971) 317.
  14. M. P. Harmer and R. J. Brook: J. Brit. Ceram. Soc., 80 (1981) 147.
  15. R. M. Young and R. McPherson: J. Amer. Ceram. Soc., 72 (1989) 1080. https://doi.org/10.1111/j.1151-2916.1989.tb06278.x
  16. A. W. Searcy: J. Amer. Ceram. Soc., 70 (1987) C61.
  17. M. P. Kassarjian, B. H. Fox and J. V. Biggers: J. Amer. Ceram. Soc., 68 (1985) C140.
  18. R. H. R. Castro, G. J. Pereira and D. Gouvea: Proceedings of the 4th Inter. Conference on Science, Technology and Applications of Sintering, D. Bouvard (ed.), Institut National Polytechnique de Grenoble, Grenoble, France (2005) 394.
  19. D. M. Hulbert, A. Anders, J. Andersson, E. J. Lavernia and A. K. Mukherjee: Scripta Mater., 60 (1985) 835.
  20. D. C. Blaine, R. M. German and S. J. Park: Adv. Powder Metall. Part. Mater. - 2005, MPIF, Princeton, NJ (2005) 1.29.
  21. D. L. Johnson: Sintering and Heterogeneous Catalysis, G. C. Kuczynski, A. E. Miller and G. A. Sargent (eds.), Plenum Press, New York, NY (1984) 243.
  22. C. E. G. Bennett, N. A. McKinnon and L. S. Williams: Nature 217 (1968) 1287. https://doi.org/10.1038/2171287a0
  23. G. E. Tardiff: Inter. J. Powder Metall., 5(4) (1969) 29.
  24. K. Upadhya: J. Metals, 39 [12] (1987) 11.
  25. P. C. Kong, Y. C. Lau, E. Pfender, K. McHenry, W. Wallenhorst and B. Koepke: Ceramic Trans., 1, G. L. Messing, E. R. Fuller, and H. Hausner (eds.), American Ceram. Soc., Westerville, OH (1987) 939.
  26. M. Eriksson, Z. Shen and M. Nygren: Powder Met., 48 (2005) 231. https://doi.org/10.1179/174329005X71939
  27. C. Feng, H. Qiu, J. Guo, D. Yan and W. A. Schulze: J. Mater. Synth. Proc., 3 (1995) 25.
  28. C. You, D. Jiang and S. Tan: J. Amer. Ceram. Soc., 87 (2004) 759. https://doi.org/10.1111/j.1551-2916.2004.00759.x
  29. C. Feng, E. Shi, J. Guo, D. Yan and W. A. Schulze: J. Mater. Synth. Proc., 3 (1995) 31.
  30. P. Vergnon, M. Astier and S. J. Teichner: Sintering and Related Phenomena, G. C. Kuczynski (ed.), Plenum Press, New York, NY (1973) 301.
  31. D. J. Chen and M. J. Mayo: J. Amer. Ceram. Soc., 79 (1996) 906. https://doi.org/10.1111/j.1151-2916.1996.tb08524.x
  32. D. H. Kim and C. H. Kim: J. Amer. Ceram. Soc., 75 (1992) 716. https://doi.org/10.1111/j.1151-2916.1992.tb07865.x
  33. J. B. Holt, D. D. Kingman and G. M. Bianchini: Mater. Sci. Eng., 71 (1985) 321. https://doi.org/10.1016/0025-5416(85)90244-7
  34. R. L. Coble: Sintering - Theory and Practice, D. Kolar, S. Pejovnik and M. M. Ristic (eds.), Elsevier Scientific, Amsterdam, Netherland (1982) 145.
  35. A. Varma: Chem. Eng. Edu., (2001) [4] 14.
  36. H. Hanado and Y. Hiraoka: Mater. Trans., 48 (2007) 775. https://doi.org/10.2320/matertrans.48.775
  37. A. Bose, B. H. Rabin and R. M. German: Powder Metall. Inter., 20(3) (1988) 25.
  38. S. Takeda: Sintering '87, 2, S. Somiya, M. Shimada, M. Yoshimura and R. Watanabe (eds.), Elsevier Applied Sci., London, UK (1988) 1076.
  39. A. Sawaoka and S. Saito: Ferrites, Y. Hoshino, S. Iida and M. Sugimoto (eds.), University Park Press, Baltimore, MD (1970) 102.
  40. L. Gao, Z. Shen, H. Miyamoto and M. Nygren: J. Amer. Ceram. Soc., 82 (1999) 1061. https://doi.org/10.1111/j.1151-2916.1999.tb01874.x
  41. T. Nagae, M. Yokota, M. Nose, S. Tomida, T. Kamiya and S. Saji: Mater. Trans., 43 (2002) 1390. https://doi.org/10.2320/matertrans.43.1390
  42. M. Suganuma, Y. Kitagawa, S. Wada and N. Murayama: J. Amer. Ceram. Soc., 86 (2006) 387.
  43. M. Suganuma, Y. Kitagawa, S. Wada and N. Murayama: J. Amer. Ceram. Soc., 86 (2006) 387.
  44. J. F. Garay: Ann. Rev. Mater. Res., 40 (2010) 445. https://doi.org/10.1146/annurev-matsci-070909-104433
  45. Z. A. Munir, D. V. Quach and M. Ohyanagi: J. Amer. Ceram. Soc., 94 (2011) 1. https://doi.org/10.1111/j.1551-2916.2010.04210.x
  46. S. T. Lin and R. M. German, Metall. Trans., 1990, 21A, 2531-2538.
  47. E. A. Olevsky, S. Kandukuri and L. Froyen: J. Appl. Phys., 102 (2007) 114913. https://doi.org/10.1063/1.2822189
  48. A. Accary and R. Caillat: J. Amer. Ceram. Soc., 45 (1962) 347. https://doi.org/10.1111/j.1151-2916.1962.tb11164.x
  49. L. Rangaraj, S. J. Suresha, C. Divakar and V. Jayaram: Metall. Mater. Trans., 39A (2008) 1496.
  50. J. C. Murray and R. M. German: Adv. Powder Metall. Particulate Mater., 9, J. M. Capus and R. M. German (eds.), MPIF, Princeton, NJ (1992) 295.
  51. A. L. Chamberlain, W. G. Fahrenholtz and G. E. Hilmas: J. Amer. Ceram. Soc., 89 (2006) 3638. https://doi.org/10.1111/j.1551-2916.2006.01299.x
  52. A. Sewchurran and L. A. Cornish: Sintering Sci. and Tech., R. M. German, G. L. Messing and R. G. Cornwall (eds.), Pennsylvania State University, State College, PA (2000) 63.
  53. L. Chen and E. Kny: Inter. J. Refract. Metals Hard Mater., 18 (2000) 163. https://doi.org/10.1016/S0263-4368(00)00017-2
  54. E. Paransky, E. Y. Gutmanas, I. Gotman and M. Koczak: Metall. Mater. Trans., 27A (1996) 2130.
  55. L. Rangaraj, C. Divakar and V. Jayaram: J. Amer. Ceram. Soc., 87 (2004) 1872.
  56. D. R. Campbell and H. B. Huntington: Phys. Rev., 179 (1069) 609.
  57. J. M. Frei, U. Anselmi-Tamburini and Z. A. Munir: J. Appl. Phys., 101 (2007) 114914. https://doi.org/10.1063/1.2743885
  58. Y. Aman, V. Garnier and E. Djurado: J. Mater. Sci., 47 (2012) 5766. https://doi.org/10.1007/s10853-012-6469-0
  59. C. M. Hsu, D. S. H. Wong and S. W. Chen: J. Appl. Phys., 102 (2007) 023715. https://doi.org/10.1063/1.2756999
  60. G. Davies and T. Evans: Proc. Royal Soc. London A, 328 (1972) 413. https://doi.org/10.1098/rspa.1972.0086
  61. K. Feng, Y. Yang, B. Shen, L. Guo and H. He: Powder Metall., 48 (2005) 203. https://doi.org/10.1179/003258905X37729
  62. M. Cologna, B. Rashkova and R. Raj: J. Amer. Ceram. Soc., 93 (2010) 3556. https://doi.org/10.1111/j.1551-2916.2010.04089.x
  63. B. Bernard-Granger, A. Addad, G. Fantozzi, G. Bonnefont, C, Guizard and D. Vernat: Acta Mater., 58 (2010) 3390. https://doi.org/10.1016/j.actamat.2010.02.013
  64. G. Bernard-Granger, N. Monchalin and C. Guizard: Mater. Lett., 62 (2008) 4555. https://doi.org/10.1016/j.matlet.2008.08.042
  65. L. G. Cordone and W. E. Martinsen: J. Amer. Ceram. Soc., 55 (1972) 380. https://doi.org/10.1111/j.1151-2916.1972.tb11316.x
  66. B. Twomey, A. Breen, G. Byrne, A. Hynes and D. P. Dowling: Powder Metall., 53 (2010) 188. https://doi.org/10.1179/174329010X12820493130451
  67. G. Thomas, J. Freim and W. Martinsen: Trans. Amer. Nucl. Soc., 17 (1973) 177.
  68. D. L. Johnson and R. A. Rizzo: Ceram. Bull., 59 (1980) 467.
  69. E. L. Kemer and D. L. Johnson; Ceram. Bull., 64 (1985) 1132.
  70. S. Sano, K. Oda, Y. Shibasaki, T. Matayoshi, Y. Kayama, Y. Setsuhara and S. Miyake: J. Japan Soc. Powder Powder Metall., 41 (1994) 739. https://doi.org/10.2497/jjspm.41.739
  71. M. Ray, D. R. Sahu, S. K. Singhe, S. Verma and B. K. Roul; Mater. Chem. Phys., 10 (2008) 435.
  72. J. D. Katz, R. D. Blake, J. J. Petrovic and H. Sheinberg: Metal Powder Rept., 43 (1988) 835.
  73. J. D. Katz: Ann. Rev. Mater. Sci., 22 (1992) 153. https://doi.org/10.1146/annurev.ms.22.080192.001101
  74. D. E. Clark and W. H. Sutton: Ann. Rev. Mater. Sci., 26 (1996) 299. https://doi.org/10.1146/annurev.ms.26.080196.001503
  75. Y. V. Bykov, K. I. Rybakov and V. E. Semenov: J. Physics D: Appl. Phys., 34 (2001) R55. https://doi.org/10.1088/0022-3727/34/13/201
  76. D. Agrawal: Sintering of Advanced Mater., Z. Z. Fang (ed.), Woodhead Publishing, Oxford, UK (2010) 222.
  77. S. Takayama, G. Link, S. Miksch, M. Sato, J. Ichikawa and M. Thumm: Powder Metall., 49 (2006) 274. https://doi.org/10.1179/174329006X110835
  78. G. F. Zu, I. K. Lloyd, Y. Carmel, T. Olorunyolemi and O. C. Wilson: J. Mater. Res., 16 (2001) 2850. https://doi.org/10.1557/JMR.2001.0393
  79. S. D. Luo, C. L. Guan, Y. F. Yang, G. B. Schaffer and M. Quan: Metall. Mater. Trans., 44A (2013) in press.
  80. A. Upadhyaya, S. K. Tiwari and P. Mishra: Scripta Mater., 56 (2007) 5. https://doi.org/10.1016/j.scriptamat.2006.09.010
  81. R. M. German: Powder Metallurgy and Particulate Materials Processing, MPIF, Princeton, NJ (2005).
  82. M. J. Yang and R. M. German: Adv. Powder Metall. Part. Mater. - 1999, 1, MPIF, Princeton, NJ (1999) 3.207.
  83. A. Simchi, F. Petzoldt, H. Pohl and H. Loffler: P/M Sci. Tech. Briefs, 3 (2001) 5.
  84. J. D. K. Rivard, A. S. Sabau, C. A. Blue, D. C. Harper and J. O. Kiggans: Metall. Mater. Trans., 37A (2007) 1289.
  85. M. Agarwala, D. Bourell, J. Beaman, H. Marcus and J. Barlow: Rapid Proto. J., 1 (1995) 26. https://doi.org/10.1108/13552549510078113
  86. D. E. Bunnell, D. L. Bourell and H. L. Marcus: Adv. Powder Metall. Particulate Mater. - 1996, MPIF, Princeton, NJ (1996) 15.93.
  87. D. L. Bourell and J. J. Beaman: Mater. Processing and Interfaces, 1, Proceedings 141st Meeting the Minerals, Metals, and Mater. Society, Warrendale, PA (2012) 537.
  88. T. B. Sercombe: P/M Sci. Tech. Briefs, 3(6) (2001) 22.
  89. F. G. Arcella and F. H. Froes: J. Metals, May (2000) 28.
  90. H. C. Kim, I. J. Shon, J. K. Yoon, J. M. Doh and Z. A. Munir: Inter. J. Refractor Metals Hard Mater., 24 (2006) 427. https://doi.org/10.1016/j.ijrmhm.2005.07.002
  91. M. Nakamura, N. Chida, T. Ohba and Y. Sugaya: J. Jap. Soc. Powder Powder Metall., 46 (1999) 538. https://doi.org/10.2497/jjspm.46.538
  92. H. C. Kim, D. Y. Oh and I. J. Shon: Inter. J. Refract. Metals Hard Mater., 22 (2004) 197. https://doi.org/10.1016/j.ijrmhm.2004.06.006
  93. H. H. Yang, Y. W. Kim, J. H. Kim, D. J. Kim, K. W. Kang, Y. W. Rhee, K. S. Kim and K. W. Song: J. Amer. Ceram. Soc., 91 (2001) 3202.
  94. W. Hermel, G. Leitner and R. Krumphold: Powder Metall., 23 (1980) 130. https://doi.org/10.1179/pom.1980.23.3.130
  95. M. Nakamura, H. Takahashi and Y. Sugaya: J. Jap. Soc. Powder Powder Metall., 49 (2002) 534. https://doi.org/10.2497/jjspm.49.534
  96. K. C. Kim, H. K. Park, I. K. Heong, I. Y. Ko and I. J. Shon: Ceram. Inter., 34 (2008) 1419. https://doi.org/10.1016/j.ceramint.2007.03.029
  97. H. C. Kim, I. K. Jeong, I. J. Shon, I. Y. Ko and J. M. Doh: Inter. J. Refract. Metals Hard Mater., 25 (2007) 336. https://doi.org/10.1016/j.ijrmhm.2006.09.001
  98. Z. A. Munir, U. Anselmi-Tamburini and M. Ohyanagi: J. Mater. Sci., 41 (2006) 763. https://doi.org/10.1007/s10853-006-6555-2
  99. C. G. Goetzel, Treatise on Powder Metallurgy, 1, InterScience Pub., New York, NY (1949) 259.
  100. Y. Miyamoto, M. Koizumi and O. Yamada: J. Amer. Ceram. Soc., 67 (1984) C224. https://doi.org/10.1111/j.1151-2916.1984.tb19488.x
  101. H. L. Marcus, D. L. Bourell, Z. Eliezer, C. Persad and W. Weldon: J. Metals, 39 [12] (1987) 6.
  102. M. A. Vasilkovska, V. I. Kovtun, S. A. Firstov, A. L. Maistrenko, M. N. Pavlovskiy and V. V. Komissarov: Science of Sintering: Current Problems and New Trends, M. M. Ristic (ed.), Serbian Academy of Sci. and Arts, Beograd, Serbia (2003) 265.
  103. F. D. S. Marquis and A. Mahajan: Powder Mater.: Current Research and Industrial Practices III, F. D. S. Marquis (ed), The Minerals, Metals and Mater. Society, Warrendale, PA (2003) 141.
  104. Y. Murakoshi, M. Takahashi, K. Hanada, T. Sano and H. Negishi: J. Jap. Soc. Powder Powder Metall., 48 (2001) 565. https://doi.org/10.2497/jjspm.48.565
  105. B. K. Yen, T. Aizawa and K. Kihara: J. Amer. Ceram. Soc., 81 (1998) 1953.
  106. J. H. Lee, N. N. Thadhani and H. A. Grebe, Metall. Mater. Trans., 27A (1996) 1749.
  107. I. Sato, A. Hibino and H. Negishi: J. Jap. Soc. Powder Powder Metall., 42 (1995) 283. https://doi.org/10.2497/jjspm.42.283
  108. T. Aizawa, S. Kamenosono, J. Kihara, T. Kato, K. Tanaka and Y. Nakayama: Intermetallics, 3 (1995) 369. https://doi.org/10.1016/0966-9795(94)00036-K
  109. I. Song and N. N. Thadhani: J. Mater. Synth. Proc., 1 (1993) 347.
  110. T. Takeuchi, M. Takahashi, K. Ado, N. Tamari, K. Ichikawa, S. Miyamoto, M. Kawahara, M. Tabuchi and H. Kageyama: J. Amer. Ceram. Soc., 84 (2001) 2521. https://doi.org/10.1111/j.1151-2916.2001.tb01046.x

Cited by

  1. Spark Plasma Sintering of Titanium Spherical Particles vol.47, pp.5, 2016, https://doi.org/10.1007/s11663-016-0732-8
  2. Development of Novel Composite Powder Friction Modifier for Improving Wheel-rail Adhesion in High-speed Train vol.25, pp.6, 2018, https://doi.org/10.4150/KPMI.2018.25.6.501