DOI QR코드

DOI QR Code

Module-theoretic Characterizations of Strongly t-linked Extensions

  • Kim, Hwankoo (Department of Information Security, Hoseo University) ;
  • Kwon, Tae In (Department of Applied Mathematics, Changwon National University)
  • Received : 2011.02.15
  • Accepted : 2011.09.23
  • Published : 2013.03.23

Abstract

In this paper, we introduce and study the concept of "strongly $t$-linked extensions", which is a stronger version of $t$-linked extensions of integral domains. We show that for an extension of Pr$\ddot{u}$fer $v$-multiplication domains, this concept is equivalent to that of "$w$-faithfully flat".

Keywords

References

  1. D. D. Anderson, E. Houston, and M. Zafrullah, t-linked extension, the t-class group, and Nagata's theorem, J. Pure Appl. Algebra, 86(1993), 109-124. https://doi.org/10.1016/0022-4049(93)90097-D
  2. N. Bourbaki, Commutative Algebra. Springer-Verlag, New York, 1989.
  3. S. Caenepeel and A. Verschoren, A relative version of the Chase-Harrison-Rosenberg sequence, J. Pure Appl. Algebra, 41(1986), 149-168. https://doi.org/10.1016/0022-4049(86)90107-6
  4. G. W. Chang, Strong Mori domains and the ring $D[X]_{Nv}$ , J. Pure Appl. Algebra, 197(2005), 293-304. https://doi.org/10.1016/j.jpaa.2004.08.036
  5. G. W. Chang, The w-integral closure of integral domains, J. Algebra, 295(2006), 195-210.
  6. G. W. Chang, Characterizations of *-cancellation ideals of an integral domain, Comm. Algebra, 37(2009), 3309-3320. https://doi.org/10.1080/00927870802502795
  7. D. E. Dobbs, E. G. Houston, T. G. Lucas, and M. Zafrullah, t-linked overrings and Prufer v-multiplication domains, Comm. Algebra, 17(1989), 2835-2852. https://doi.org/10.1080/00927878908823879
  8. D. E. Dobbs, E. G. Houston, T. G. Lucas, M. Roitman, and M. Zafrullah, On t-linked overrings, Comm. Algebra, 20(1992), 1463-1488. https://doi.org/10.1080/00927879208824414
  9. L. Fuchs and L. Salce, Modules over Non-Noetherian Domains, Mathematical Surveys and Monographs, 84, AMS, Providence, RI, 2001.
  10. R. Gilmer, Multiplicative Ideal Theory, Queen's Papers in Pure and Applied Mathematics; Queen's University, Vol 90 Kingston, Ontario, 1992.
  11. S. Glaz and W. V. Vasconcelos, Flat ideals. II, Manuscripta Math., 22(1977), 325-341. https://doi.org/10.1007/BF01168220
  12. H. Kim, Kaplansky-type theorems, Kyungpook Math. J., 40(2000), 9-16.
  13. H. Kim, Module-theoretic characterizations of t-linkative domains, Comm. Algebra, 36(2008), 1649-1670. https://doi.org/10.1080/00927870701872513
  14. H. Kim and T. I. Kwon, Locally polynomial rings over PvMD's, Kyungpook Math. J., 45(2005), 131-135.
  15. M. Orzech, Divisorial modules and Krull morphisms, J. Pure Appl. Algebra, 25(1982), 327-334. https://doi.org/10.1016/0022-4049(82)90087-1
  16. A. Smet and A. Verschoren, The strong (PDE) condition, Quaestiones Mathematicae, 23(2000), 495-505. https://doi.org/10.2989/16073600009485992
  17. F. Wang, w-dimension of domains, II, Comm. Algebra, 29(2001), 2419-2428. https://doi.org/10.1081/AGB-100002398
  18. F. Wang, On induced operations and UMT-domains, Sichuan Shifan Daxue Xuebao Ziran Kexue Ban, 27(2004), 1-9.
  19. F. Wang, Foundations of Commutative Ring Theory, preprint.
  20. F. Wang and R. L. McCasland, On w-modules over strong Mori domains, Comm. Algebra, 25(1997), 1285-1306. https://doi.org/10.1080/00927879708825920
  21. F. Wang and R. L. McCasland, On strong Mori domains, J. Pure Appl. Algebra, 135(1999), 155-165. https://doi.org/10.1016/S0022-4049(97)00150-3
  22. H. Yin, F. Wang, X. Zhu, and Y. Chen, w-modules over commutative rings, J. Korean Math. Soc., 48(2011), 207-222. https://doi.org/10.4134/JKMS.2011.48.1.207
  23. X. Zhu, Torsion theory and finite normalizing extensions, J. Pure Appl. Algebra, 176(2002), 259-273. https://doi.org/10.1016/S0022-4049(02)00116-0

Cited by

  1. Integral Domains in which Every Nonzerot-Locally Principal Ideal ist-Invertible vol.41, pp.10, 2013, https://doi.org/10.1080/00927872.2012.678022
  2. On S-strong Mori domains vol.416, 2014, https://doi.org/10.1016/j.jalgebra.2014.06.015