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Abstract 
 

Data compression at the transport layer could both reduce transmitted bytes over network links 

and increase the transmitted application data (TCP PDU) in one RTT at the same network 

conditions. Therefore, it is able to improve transmission efficiency on Internet, especially on 

the networks with limited bandwidth or long delay links. In this paper, we propose an 

on-the-fly TCP data compression scheme, i.e., the TCPComp, to enhance TCP performance. 

This scheme is primarily composed of the compression decision mechanism and the 

compression ratio estimation algorithm. When the application data arrives at the transport 

layer, the compression decision mechanism is applied to determine which data block could be 

compressed. The compression ratio estimation algorithm is employed to predict compression 

ratios of upcoming application data for determining the proper size of the next data block so as 

to maximize compression efficiency. Furthermore, the assessment criteria for TCP data 

compression scheme are systematically developed. Experimental results show that the scheme 

can effectively reduce transmitted TCP segments and bytes, leading to greater transmission 

efficiency compared with the standard TCP and other TCP compression schemes.  
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1. Introduction 

With rapid growth in the amount of users and network applications, Internet traffic has been 

increasing explosively. A tremendous growth in the application of remote computing 

technology can be witnessed and there has been substantial increase in the amount of data 

transmitted over long delay networks. Therefore, it is highly desirable to provide high-speed 

data communication for a variety of network applications.  

However, the networks with low and limited network bandwidth, such as residential and 

wireless networks, cannot keep up with the increasing bandwidth need of network applications. 

Serious network performance deterioration due to link congestion or packet loss might occur 

when the high-bandwidth-consuming applications run over a low bandwidth link.   

The transmission rate of transport layer entities is controlled by the transport layer protocols. 

The Transmission Control Protocol (TCP) [1] is widely used as the transport layer protocol for 

reliable data delivery on the Internet. Many TCP congestion control approaches [2-7] have 

been proposed to enhance TCP performance in different network environments. TCP 

Westwood [2] significantly improves the data transfer efficiency in error-prone networks (e.g., 

wireless) by estimating the last “good” flow rate and using this rate as a baseline to distinguish 

between congestion packet loss and random packet loss. TCP Peach [3] improves TCP 

performance in the satellite networks by introducing the “dummy” segments to probe the 

bandwidth availability. Podlesny et al. [4] propose an Asymmetric Queuing (AQ) mechanism 

that enables full utilization of the bottleneck access link in residential networks with 

asymmetric capacities. Leu et al. [5] propose an aggressive path switching scheme for SCTP 

and evaluate the scheme in terms of end-to-end delay, jitters and throughputs. ARROW-TCP 

[6] is proposed to address the issues of stability and convergence in existing transmission 

control protocols. It uses explicit rate pre-assignment mechanism to obtain ideal performance 

of zero queuing delay and free packet loss. Liu et al. [7] propose a new scheme to enhance 

TCP performance in the space networks, and the simulation results show that the scheme 

greatly improves the throughput and time delay. Although these solutions greatly improve the 

bandwidth utilization by optimizing congestion control algorithms, their throughput 

enhancements have still been bounded in the networks with bandwidth constrained (e.g., 

residential or wireless networks) or long delay (e.g., satellite) links. This is because it is still 

apt to lead to link congestion or packet loss when a large amount of network traffic is 

transmitted over the networks with low bandwidth or long delay links. In addition, due to the 

fact that the throughput of TCP is inversely proportional to the round-trip time (RTT) of the 

networks, the congestion window growth rate would be reduced on the long RTT connections, 

thereby resulting in significant throughput degradation in the long delay networks. 

Since data compression may increase the amount of application data carried by network 

links, it is promising to improve transmission efficiency in the networks with limited 

bandwidth or long delay links. Some industrial solutions have included compression technique, 

however, due to the proprietary nature of implemented technology there has been limited 

published material on the combination of transport protocols and compression systems [8]. 

Many researches have been done for data aggregation and compression of wireless and 

satellite network data [9-12], but the in-depth analysis and design are not given.  



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 7, NO. 3, Mar. 2013                                 473 

Copyright ⓒ 2013 KSII 

Data compression can be deployed on different layers of the network protocol stack. Our 

scheme concentrates on the transport layer compression, especially TCP data compression 

because of the following advantages: 

1) The transport layer compression is transparent to users and applications, while the 

application layer scheme needs to modify user applications. 

2) Compression at the transport layer could potentially gain higher performance than the 

lower network and link layer compressions because it can use larger data block to compress 

and reduce the number of transmitted TCP segments, thereby reducing the overhead of TCP 

headers and IP headers. In addition, it need not work on hardware thus may not be under 

restriction on the processing time of compression scheme [13].  

The transport layer compression can bring a lot of benefits, while there are many challenges 

in the practical on-the-fly TCP data compression. It could perform ineffective compression on 

the hard-to-compress data such as audio and video data, which has been previously 

compressed by external processes, since it is unaware of the characteristics of the application 

data. It is preferred to use larger data block in the compression to achieve great compression 

benefits, while the compressed data size is limited by the Maximum Segment Size (MSS) of 

TCP connection. If the compressed data size is larger than the MSS, the compressed data 

would be encapsulated into multiple TCP segments in sending, and the receiver would wait 

and gather all of the segments to decompress together. This would increase the delivering 

latency between the application layer peers. Therefore, the challenging issues for the 

on-the-fly TCP data compression include: 1) when to carry out compression, 2) what 

compression scheme should be applied to maximize compression efficiency, 3) how to 

systematically analyze and evaluate the performance of compression scheme. 

In this paper, we propose TCPComp, the on-the-fly TCP data compression scheme. When 

arriving at the transport layer, the application data is divided into data blocks and compressed, 

and then each compressed data block is encapsulated into a TCP segment. We believe that 

TCPComp will result in an immense TCP performance enhancement in the networks with 

limited bandwidth or long delay links. Throughout the paper, the term compression ratio refers 

to the ratio between the original data size and the compressed data size, and the term 

compression unit refers to the application data block to be compressed. 

Our main contributions are as follows: Firstly, based on the statistical investigation of the 

correlation between some popular network data types and their segment compression ratios, 

the compression decision mechanism is introduced to determine which data block can be 

compressed. Secondly, for the upcoming data to be compressed, the compression ratio 

estimation algorithm is adopted to predict its compression ratio so as to determine proper 

compression unit size. Lastly, the assessment criteria for the transport layer compression 

scheme are systematically developed. 

 

This paper is organized as follows. In Section 2, we review previous progress on the 

network data compression and briefly describe the Kalman Filter. Section 3 details the design 

of the TCP data compression scheme. Then experimental results are presented and discussed 

in Section 4. Finally, Section 5 concludes the paper by briefly summarizing the main points 

and proposing future work. 
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2. Related work 

The candidate layers where compression can be carried out are the application layer, network 

layer, link layer and transport layer. In this section, we compare these four candidates. In 

addition, the Kalman Filter, which is used to predict the compression ratios of upcoming 

application data, is also briefly described in this section. 

2.1 Data Compression at the Application Layer 

Application layer is the nature place to deploy compression, i.e., data is compressed before 

given to the operating system or the TCP/IP stacks for transmission. Compression is proposed 

in File transfer protocol (FTP) [14] to effectively reduce the size of printer files such as those 

generated by Remote Job Entry (RJE) hosts. Jeannot et al. [15] present an Adaptive Online 

Compression library that enables data transmission with compression to improve middleware 

performance. Gutwin et al. [16] propose an automatic compression system that minimizes 

verbose messages sent by groupware. Experimental results show that these approaches have 

high transmission efficiency on wired networks. As the application knows the content, the 

most suitable compression algorithm can be chosen to achieve high transmission performance. 

However, it is not transparent for both users and applications, and it is impractical to modify 

all the user applications in a real world.   

2.2 Data Compression at the Network Layer 

Network layer compression is applied to TCP segments before adding IP headers. The most 

notable packet compression technique is IPComp [17] that has been proposed in RFC 3173. 

The protocol is designed to increase the overall communication performance between a pair of 

nodes over slow or congested links via compressing IP packet payload. Tan et al. [18] propose 

a real-time adaptive packet compression scheme for bandwidth limited high latency networks. 

This scheme adopts block compression to increase the compression ratios and reduce network 

load. DART [19] is proposed as a rate-based congestion control and scheduling mechanism 

with integrated data compression, in which a number of TCP segments may be compressed 

jointly to maximize the compression efficiency in the compression engine. Since TCP header 

is compressed at the network layer, some of information about the TCP connection such as 

port number cannot be recognized when a packet passes a layer-4 switch or firewall. Moreover, 

the network layer has to carry out extra compression when a TCP segment is retransmitted. 

2.3 Data Compression at the Link Layer 

CCP [20] is a compression technique used at the link layer that has been proposed in RFC 

1962. The whole packet is compressed before transmitted into the network link and 

decompressed at the other end of the link. Chawla et al. [10] design and implement a data 

packet compression mechanism for IEEE 802.11 networks and study its impact on the 

compression efficiency and throughput. The link layer compression can speed up the delivery 

process and provide more efficient utilization of available capacity. But there must be a 

compression and a decompression on every physical link in the networks, since the 

compression is applied to IP header, which is used for routing packets from sender to receiver. 

Compressing IP header on every physical link has a lot of overheads on the network 

performance and it must work on hardware.. 
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2.4 Data Compression at the Transport Layer 

Compression could be carried out on user payload within the transport protocols, such as TCP, 

before adding TCP headers. A large number of experiments are conducted in [21] to assess the 

performance of Cisco devices that employ flow optimization and data compression methods. 

Experimental results show multi-fold improvements are achieved in the throughput over the 

buffer-tuned TCP both for single and most multiple streams. Lee et al. [22] suggest a 

kernel-level TCP data compression scheme, which is transparent to the existing applications 

and can provide high-speed wireless communication. This scheme initially explores some of 

tricky issues resulting from the kernel-level compression, while it has not represented detail 

solutions and deep analysis.  

In addition to the above methods, some approaches, independent of specific protocol layers, 

are also proposed. Reinhardt et al. [11] present a Squeeze.KOM compression layer for sensor 

networks that encapsulates all functions within a separate compression layer. It can be 

combined with application level data encoding, energy-aware MAC protocols, data 

aggregation mechanisms, or header compression. The aim of this scheme is to preserve energy 

by reducing packet sizes and thus minimizing activity periods of the radio transceiver. 

However, these complex functions adopted in the compression layer, if not designed carefully, 

would not work well together. 

2.5 The Kalman Filter  

The Kalman Filter [23]bases on the criteria of lease-mean-square error estimation to search for 

a recursive estimation algorithm. It supports estimations of past, present, and even future states, 

and it can do so even when the precise nature of the modeled system is unknown.  

The equations for the Kalman filter fall into two groups: time update equations and 

measurement update equations. The specific equations are presented below. 

Time Update Equations: 
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Measurement Update Equations: 
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where 

ˆ  kx
is a priori estimate at step k+1given knowledge of the process prior to step k, 

kP
is a priori estimate error covariance at step k+1,  

ˆ  kx is a posteriori state estimate at step k, 



476                                                                Wang et al.: On-the-fly Data Compression for Efficient TCP Transmission 

kP is a posteriori estimate error covariance at step k, 

kK is Kalman Filter gain or blending factor at step k, 

1kA  , B  and kH are the state matrixes, 

kz is a measurement variable at step k, 

1ku  is a control input at step k-1, 

1kQ  and kR are the process and measurement noise covariance matrixes (respectively). 

3. On-the-fly TCP data Compression Scheme (TCPComp)  

3.1 Overview 

In this section, we briefly describe the overall design of the TCPComp scheme. Fig. 1 shows 

the position where TCPComp is applied in the TCP/IP stacks and the architecture of 

TCPComp. A 2-byte TCP compression header is employed in each TCPComp segment as 

presented in Fig. 2. The compression header is used to indicate the transmission form of the 

application data or the compression algorithms used in the TCPComp (e.g. 0 for no 

compression, 1 for compression algorithm A, and 2 for compression algorithm B, etc.). We 

define the size of TCP MSS excluding the compression header as TCPComp_MSS size, i.e., 

 

_ _ ( )TCPComp MSS size MSS lengthof Hdr                                 (3) 

 

 
Fig. 1. The architecture of the TCPComp Scheme 
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Fig. 2. The structure of the TCPComp segments 

 

On the sender side, when application data arrives, it will be buffered within the socket layer. 

The compression decision mechanism is employed to determine whether to carry out the 

compression or not. If not, the data would be transmitted in the original form. Otherwise, a part 

of the application data is extracted from the buffer to be compressed and encapsulated in a 

TCP segment. The amount of the part of data, i.e., compression unit size, could be determined 

by many ways. One direct solution is to compress the application data in the TCPComp_MSS 

size, which avoids allocating the additional data buffer. However, the TCPComp_MSS size is 

smaller than the MSS size, and the MSS size is limited by the MTU size provided by network 

devices, which is around 1500 bytes in many cases. The compression ratios of the application 

data would be low when the compression unit size is too small. The TCPComp scheme 

determines the compression unit size according to the estimated compression ratio and obtains 

proper application data to compress. Meanwhile, it ensures that the compressed data size is no 

more than the TCPComp_MSS size so as to be encapsulated in a single TCP segment and then 

handed to the lower layer. For the application data of a given size, this method used to 

determine the compression unit size could not only achieve greater compression efficiency, 

but also reduce the amount of TCP segments and increase the amount of the application data 

transmitted in one RTT. If the compressed data size is more than the original data size or the 

TCPComp_MSS size, we think the compression has failed, and the data would be sent in the 

original form.  

On the receiver side, the payload is extracted from a TCP segment, and then the 

compression header can be obtained. The total data is extracted and processed according to the 

compression header. If it is uncompressed, it would be directly delivered to the application 

layer. Otherwise, it would be decompressed according to the used compression algorithm and 

delivered to the upper-layer applications. In this study, we focus on the sender side and the 

basic idea can be easily extended to the receiver side. 

3.2 Dynamical Compression Decision Mechanism 

Since TCP is unaware of the characteristics of the application data, it would perform futile 

compressions on the data such as audio and video data, which probably has been encoded 

deliberately with less redundant information. In such cases, how to determine the data blocks 

that can be compressed is a challenge. If the application data is not compressible, the 

compression must stop in a timely manner so as not to affect transmission performance. For 

this, the compression decision mechanism is applied to determine when to carry out 

compressions. The details of the mechanism are described as below. 

3.2.1 The Compression Ratios of Different Application Data Types 

The type of application data transmitted on Internet usually includes text, audio and video, 

etc. We choose nine sets of data among which there are three sets of text data, three sets of 

audio data and three sets of video data. None of them has the same contents. The data is 

compressed using a constant segment length (equal to 1446 bytes) as compression unit, and 

then the first 10,000 compression ratios of each set of data are recorded. Confidence intervals 

with a confidence coefficient of 95% for the compression ratios of each set of data are 



478                                                                Wang et al.: On-the-fly Data Compression for Efficient TCP Transmission 

calculated. Table 1 shows the confidence intervals of compression ratios. It is observed from 

Table 1 that the compression ratios of video and audio data are lower than 1.2, while that of 

text data are higher than 1.5.  

3.2.2 Compression Decision Mechanism 

As mentioned before, futile compressions on the data, such as audio and video data, could 

be performed and thus great overheads would be brought to data transmission. In order to 

reduce the overheads brought by unnecessary compression attempts, the dynamic compression 

decision mechanism is applied in TCPComp to avoid futile compressions. The core of the 

mechanism is the backoff method. In most cases, the compression ratios of current 

compression units could be close to that of the adjacent compression unit due to the 

similarities of data from the same flow. If the compression ratios of the data in n consecutive 

compression units with the TCPComp_MSS size are lower than a threshold, named CRmin, it 

is possible that upcoming application data is also hard-to-compress. Therefore, the process of 

backoff starts, i.e., the next m segments are sent without attempting compression. If the 

compression ratio of the (m+1) th is still lower than CRmin, maybe there are more segments in 

upcoming data would be hard-to-compress. Hence, m, the backoff factor, is multiplied by 2 

and the process of backoff continues. As long as a compression ratio is not lower than CRmin, 

the normal process of TCPComp restarts. 

The value of CRmin is crucial for the compression benefits of the TCPComp scheme. If the 

value is too high, the chances that data is transmitted in the compressed form would be reduced, 

vice verse the compression benefits may be small due to the unnecessary compression 

attempts. An appropriate value should be chosen to obtain the greatest compression benefits 

but the least failure numbers. The value of CRmin in our scheme is suggested as 1.2 based on 

the results in Table 1. 

 

Table 1. Confidence Interval of Compression Ratios     

Data type No. Confidence Interval (Confidence Coefficient = 95%) 

 Text data 

1 [1.5686, 1.5745] 

2 [1.6357, 1.6414] 

3 [2.4094, 2.4323] 

Video data 

1 [1.214, 1.2621] 

2 [1.0461, 1.0636] 

3 [0.9965, 1.0103] 

Audio data 

1 [1.0108, 1.0128] 

2 [0.9866, 1.0031] 

3 [1.003, 1.0376] 

 

In the decision mechanism, once the compressed data size is larger than the original data 

size or the TCPComp_MSS size, the compression is thought to fail. Thus the data must be sent 

in the original form. As long as the compressed data size is smaller than the original data size, 

the data will be transmitted in the compressed form.  

3.3 Compression Ratio Estimation Algorithm Based on Kalman Filter 

The data compression ratios highly depend on the compression unit size. A larger compression 

unit generally results in a better compression ratio. An optimal compression unit size should 
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be utilized to achieve great compression efficiency. We estimate the compression ratios of 

upcoming application data based on Kalman Filter, and then the size of the i-th compression 

unit is determined as Equation (4) 

 

* _ , 1,2,3,...i iorig_size target_size est CR i                                       (4) 

where _ iest CR is an estimated compression ratio of upcoming application data. The 

target_size is the expected size of the compressed data，and it should be no more than the 

TCPComp_MSS size according to the presentation depicted in the introduction. The optimal 

value of target_size in our scheme will be discussed in Section 4. In this section, we will 

explore the issue of the compression ratio estimation supposing the value of target size is 

fixed. 

In most cases, the compression ratios of current compression units could be close to that of 

the nearest compression unit due to the similarities of data from the same flow. Therefore, a 

conservational estimation of compression ratios is expected to avoid compression failures 

induced by overestimated compression ratios. In Equations (1) and (2), we set the 

parameters kA , B and kH  as unit matrixes, and 1ku  , 1kQ   and kR as constants. Based on 

Kalman Filter, we derive the specific equations for estimating compression ratios as follows:  

Time Update Equations: 
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Measurement Update Equations: 
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where  

_ kest CR
is a priori compression ratio estimate at step k,  

_ kest CR is a compression ratio estimate at step k, 

kCR is a true compression ratio at step k, 

The definitions of other parameters are same as that in Equations (1) and (2). 

Once the data in the compression unit is transmitted in the compressed form, its true 

compression ratio is recorded and utilized to estimate the next one by Equations (5) and (6). 
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The new estimate will be adopted to calculate the next compression unit size by Equation (4). 

If the compression fails, the compression ratio estimation would be restarted.  

4. Performance Evaluation  

In this section, We follow a threefold experimental methodology: 1) three metrics are 

presented to evaluate the TCP compression scheme, 2)the optimal value of target-size is 

discussed according to the above presented metrics, 3) the performance of TCPComp is 

compared with the kernel-level compression scheme [22] and the standard TCP by the 

transmission time over real network environment. 

4.1 Metrics Definition 

Compression overheads differ from each other due to hardware and software related factors. 

Therefore a set of metrics for a TCP data compression scheme is required to provide a more 

timely understanding of data transmission in the view of compression benefits, and it is also 

possible to offer a chance to explore new approaches for more transmission performance. We 

present three metrics: segment count, compression efficiency and compression failure number, 

which can demonstrate the transmission performance of the TCP compression schemes 

systematically. The definitions of these metrics are as follows. 

Definition1: If the compressed data size is no more than the TCPComp_MSS size, the 

TCPComp scheme would encapsulate the chunk of compressed data and the compression 

header with a TCP header, thereby forming a TCP segment. For certain application data of a 

given size, the total number of these segments is referred as segment count. The larger the 

segment count is, the greater the overheads of TCP and IP headers would be.  

Definition2: For certain application data of a given size, when the TCPComp scheme is 

applied, the ratio between the amount of the application data and the sum of all transmitted 

TCP payloads excluding the compression headers is referred as compression efficiency. When 

TCPComp is adopted, the sum of all TCP payloads would be no more than the amount of 

uncompressed user data, i.e., compression efficiency should not be smaller than 1.0. The 

higher the compression efficiency is, the less the data transmitted over the links would be.  

Definition3: The TCPComp scheme grabs the application data with a compression unit size 

to carry out a compression. If the compressed data size is more than the TCPComp_MSS size 

or the original data size, we think this compression process has failed. The third metric is the 

number of compression failures referred as failure count. For certain application data of a 

given size, the larger the failure count is, the greater the extra overheads of compression 

process would be. 

4.2 Experimental System Setup 

The TCPComp scheme is implemented in the Linux (kernel version 3.1.4). Fig. 3 shows the 

experimental system setup. The three clients apply the standard TCP, kernel-level 

compression scheme and the TCPComp scheme, respectively, and all of them are equipped 

with Intel Pentium E5300 2.60GHZ processors and 2GB DDR2. The three servers are PCs 

equipped with Intel Xeon E7-8870 2.40GHZ processors and 1GB DDR3. The Internet access 

rates are 6 Mbps, and RTT between senders and receivers is about 100ms, which is the main 

characteristic of the high latency networks. Clients send data; the servers receive data and 

carry out corresponding decompression process.  
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Lossless compression schemes which can be applied to arbitrary data types with the ability 

to fully recover the contents by decompression. In our experiments, the Zip algorithm, an 

efficient lossless compression algorithm, is employed as the basic compression method. Other 

compression algorithms can be employed in a similar way. 

 

Client 1

Client 2

Client 3

Server 3

Server 2

Server 1Internet

 
Fig. 3. Experimental system for TCPComp 

 

4.3 Discussion of target_size Parameter 

In order to optimize the performances of our scheme, we discuss the target_size based on the 

metrics presented in Section 4.1. As the compression ratios of text data are generally higher, it 

is possible for them to be sensitive to the value of target_size. Four text files are used in our 

experiments for determining the optimal value of target_size. The former three text files are 

obtained from the Canterbury Corpus [24], and the fourth is the Yahoo home page in the 

HTML format. The basic information about them is shown in Table 2. The MSS is 1448 bytes 

and TCPComp_MSS size is 1446 bytes in our experiment environment. Fig. 4 shows the 

impact of the values of target_size on the performance of TCPComp as the target_size is 

enumerated from 100 bytes to 1600 bytes with step of 50 bytes. 

 

Table 2. Basic information of the example files 

Filename File size (bytes) Specification 

bible.txt 4,047,392 The King James version of the bible 

E.coli 4,638,690 Complete genome of the E.coli Bacterium 

pi.doc 1,031,680 The first million digits of pi 

Yahoo.htm 305,279 The Yahoo home page 

 

As we can observe from Fig. 4, the segment count and failure number of all files decrease 

with the increases of target_size until it reaches 1400 bytes, meanwhile, the compression 

efficiency increases with the increases of target_size. Since the compression unit size would 

be increased with the increase of target_size, higher compression ratios could be achieved, i.e., 

higher performance in term of the three metrics. However, the situation changes when 

target_size is larger than 1400 bytes. Too large target_size would result in a consequence that 

compressed data could be larger than the TCPComp_MSS size due to the estimation errors, 

and thus this compression process fails. As a result, the segment count and failure number 

increase and the compression efficiency decreases when target_size is close to the 

TCPComp_MSS size. In this context, 1400 bytes is the optimal target_size in our experiment. 

The values of the MSS could be distinct for different network conditions and so is the 

TCPcomp_MSS. Thus the value of target_size can be calculated by Equation (7). When 
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TCPComp_MSS size is 1446 bytes, 1400 bytes is the optimal target_size as shown in Fig. 4. 

Divide 1400 by 1446 and we get about 0.95 as the empirical value of “a” in Equation (7). 

 

* _ ,  0 1target_size a TCPComp MSS a                                             (7) 

 

 
Fig. 4. Impact of the value of target_size on the performance of TCPComp  

 

4.4 Experimental Evaluation of CR Estimation Algorithm  

As mentioned in Section 3.3, TCPComp applies Kalman Filter to the compression ratio 

estimation. To evaluate the performance of the compression ratio estimation algorithm, all 

compression ratio estimates and the true compression ratios in the experiments are recorded 

and compared in Fig. 5. CR is referred as the compression ratio. The results show that the 

variation tendency of compression ratio estimates is overall in line with that of the true 

compression ratios, and the compression ratio estimates are basically near the true 

compression ratios. Enough application data can be obtained and compressed successfully due 

to the accuracy of the compression ratio estimation algorithm. Therefore, the compression 

ratio estimation based on Karlman Filter helps to increase compression efficiency and 

decrease compression failure number in the TCPComp scheme. 

4.5 Performance Comparison with Other Schemes 

For the evaluation of transmission performance, we employ three different kinds of data: text, 

multimedia, and hybrid data in the experiments. The text data comes from a few world classic 

novels in English; the multimedia data comes from a movie, The Godfather Part II, in the 

RMVB format; and the hybrid data is obtained from the webpage of Yahoo sports, including 

text, video, audio data and pictures. The clients deploy the standard TCP, the kernel-level 

app:ds:variation%20tendency
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compression scheme and the TCPComp scheme, respectively. They send the same data to the 

servers at the same time. Table 3 shows the parameters for TCPComp in our performance 

evaluation experiments. 

 

 
Fig. 5. Comparison between CR estimates and true CRs 

 

Table 3. The parameter configuration for TCPComp 

Component Parameter Parameter Value 

Compression 

decision 

CRmin 1.2 

n 5 

m 5 

Compression ratio 

estimation 

P0 10 

uk 10
-3 

Qk 10
-6 

Rk 10
-1 

target_size 1400 bytes 

 

We compare the performance of the three schemes in term of segment count, compression 

efficiency and transmission time. Figs. 6-8 demonstrate that the performance of TCPComp on 

transmitting the text data. From Fig. 6, the average segment count in the TCPComp scheme is 

reduced by about 43.58% comparing with the standard TCP and about 43.74% comparing 

with the kernel-level compression scheme, which would result in the decrease of the 

overheads of TCP and IP headers. While the segment count in the kernel-level compression 

scheme is slightly more than that in the standard TCP. This is because the kernel-level 

compression scheme deploys the 4-byte compression headers, and the total size of the 

compression unit and the compression header is no more than the MSS size. Additional header 

overheads increase the amount of TCP segments. In Fig. 7 the maximum CR denotes the 
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compression ratios of the whole experimental data compressed using the Zip algorithm at the 

application layer. Due to employing the compression ratio estimation algorithm based on 

Kalman Filter, the compression efficiency in the TCPComp scheme is twice as much as that in 

the standard TCP and a little higher than that in the kernel-level compression scheme. For the 

same application data, higher compression efficiency indicates that less data is transmitted 

over the links. This would help to alleviate network congestion and reduce the chances of 

packet drops and the amount of packet retransmissions at the same network conditions. 

Therefore, the transmission performance would be significantly enhanced. As shown in Fig. 8, 

the transmission time of text data in TCPComp is less than that in the kernel-level compression 

scheme and in the standard TCP, and it is worth noting that the transmission time in TCPComp 

is about half of that in the standard TCP. 
 

 
Fig. 6. The segment count of transmitted text data 

 

 
Fig. 7. The compression efficiency of transmitted text data 

 

For hybrid data, which includes text and multimedia data, overall the performance of 

TCPComp is still better than that of two others. It is observed in Fig. 9 that the maximum CR 

of hybrid data is significantly less than that of text data. This is because there are some 

non-compressible data such as videos and pictures in the hybrid data. The hybrids of 

application data with different types and context could result in a large number of estimation 

errors, thus the compression ratio estimation algorithm does not work as efficiently as in the 

case of text data. Nevertheless, the compression efficiency in TCPComp is higher than that in 
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two others because TCPComp can distinguish compressible data from the hybrid data and 

carry out compression by the compression decision mechanism proposed in Section 3.2. Fig. 

10 shows that the transmission time of hybrid data in TCPComp is still less than that in the 

kernel-level compression scheme and the standard TCP. Moreover, the segment count in 

TCPComp is comparable with that in two others, i.e., it does not increase the segment count. 

 
Fig. 8. The transmission time of text data 

 

 
Fig. 9. The compression efficiency of transmitted hybrid data 

 

 
Fig. 10. The transmission time of hybrid data 
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For the multimedia data, which is usually hard to compress, the performance of TCPComp 

is comparable with two others as shown in Fig. 11. Extra process overheads are reduced 

because of the backoff method presented in Section 3.2.2. Fig. 12 demonstrates that the 

backoff method significantly decreases the overheads for the multimedia data in term of the 

compression failure number. 
 

 
Fig. 11. The transmission time of multimedia data 

 

 
Fig. 12. The failure number comparison of TCPComp with and without backoff 

5 Conclusions and Future Work 

Data compression at the transport layer is potential to improve transmission efficiency in a low 

bandwidth or high delay network since it can reduce transmitted bytes over network links and 

increase transmitted application data in one RTT at the same network conditions. We propose 

a TCP data compression scheme (TCPComp) to enhance TCP performance. This scheme 

determines which compression unit can be compressed by the compression decision 

mechanism, and determines the compression unit size by the compression ratio estimation 

algorithm. 

It is observed through experiments in the real network environment that though 

transmission time saving depends on statistics of the data and its content, overall TCPComp 

outperforms the kernel-level compression scheme and the standard TCP. When transmitting 

text data, huge performance gain can be brought due to the compression ratio estimation 
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algorithm. In the case of the multimedia data and the hybrid data, it achieves comparable 

performance with the two others due to efficient compression decision mechanism. 

It is inevitable that compression would introduce some latency due to the intensive 

computation and memory access to compress and decompress data. However, since the 

backoff method in the compression decision mechanism could reduce extra process overheads, 

TCPComp can be applied in WANs, in particular the networks with long delay. Moreover, as 

TCPComp decreases the transmitted bytes over network links and thereby reducing the energy 

consumption of sensor nodes, it can also be applied in  wireless sensor networks. 

In our scheme, the Zip algorithm has been applied due to its high compression ratio. As 

future work, we intent to extend the TCPComp scheme based on its architecture by integrating 

a greater variety of compression algorithms. 
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