
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 7, NO. 3, Mar. 2013 471

Copyright ⓒ 2013 KSII

This work was supported by the Important National Science & Technology Specific Projects of China

(2012ZX10004-901001); the National Natural Science Foundation of China (11102124), the Program for New

Century Excellent Talents in University, Ministry of Education of China (NCET-10-0604), the Provincial Key

Science and Technology Research and Development Program of Sichuan, China (2013SZ0002).

http://dx.doi.org/10.3837/tiis.2013.03.004

On-the-fly Data Compression for Efficient
TCP Transmission

Min Wang
1, 2

, Junfeng Wang
1
, Xuan Mou

1
 and Sunyoung Han

3

1 College of Computer Science, Sichuan University

Chengdu 610064, P.R. China

[e-mail: honghewangmin@sina.com.cn, wangjf@scu.edu.cn, mou0718@163.com]
2 College of Computer Science and Information Technology, Yunnan Normal University

Kunming 650092, P.R. China

[e-mail: honghewangmin@sina.com.cn]
3 Department of Computer Science and Engineering, Konkuk University

Hwayang, Gwangjin, Seoul 143-701, Korea

[e-mail: syhan@cclab.konkuk.ac.kr]

*Corresponding author: Junfeng Wang

Received October 14, 2012; revised February 8, 2013; accepted March 16, 2013; published March 29, 2013

Abstract

Data compression at the transport layer could both reduce transmitted bytes over network links

and increase the transmitted application data (TCP PDU) in one RTT at the same network

conditions. Therefore, it is able to improve transmission efficiency on Internet, especially on

the networks with limited bandwidth or long delay links. In this paper, we propose an

on-the-fly TCP data compression scheme, i.e., the TCPComp, to enhance TCP performance.

This scheme is primarily composed of the compression decision mechanism and the

compression ratio estimation algorithm. When the application data arrives at the transport

layer, the compression decision mechanism is applied to determine which data block could be

compressed. The compression ratio estimation algorithm is employed to predict compression

ratios of upcoming application data for determining the proper size of the next data block so as

to maximize compression efficiency. Furthermore, the assessment criteria for TCP data

compression scheme are systematically developed. Experimental results show that the scheme

can effectively reduce transmitted TCP segments and bytes, leading to greater transmission

efficiency compared with the standard TCP and other TCP compression schemes.

Keywords: TCP data compression; long delay networks; limited bandwidth; compression

decision mechanism; compression ratio estimation

mailto:wangjf@scu.edu.cn

472 Wang et al.: On-the-fly Data Compression for Efficient TCP Transmission

1. Introduction

With rapid growth in the amount of users and network applications, Internet traffic has been

increasing explosively. A tremendous growth in the application of remote computing

technology can be witnessed and there has been substantial increase in the amount of data

transmitted over long delay networks. Therefore, it is highly desirable to provide high-speed

data communication for a variety of network applications.

However, the networks with low and limited network bandwidth, such as residential and

wireless networks, cannot keep up with the increasing bandwidth need of network applications.

Serious network performance deterioration due to link congestion or packet loss might occur

when the high-bandwidth-consuming applications run over a low bandwidth link.

The transmission rate of transport layer entities is controlled by the transport layer protocols.

The Transmission Control Protocol (TCP) [1] is widely used as the transport layer protocol for

reliable data delivery on the Internet. Many TCP congestion control approaches [2-7] have

been proposed to enhance TCP performance in different network environments. TCP

Westwood [2] significantly improves the data transfer efficiency in error-prone networks (e.g.,

wireless) by estimating the last “good” flow rate and using this rate as a baseline to distinguish

between congestion packet loss and random packet loss. TCP Peach [3] improves TCP

performance in the satellite networks by introducing the “dummy” segments to probe the

bandwidth availability. Podlesny et al. [4] propose an Asymmetric Queuing (AQ) mechanism

that enables full utilization of the bottleneck access link in residential networks with

asymmetric capacities. Leu et al. [5] propose an aggressive path switching scheme for SCTP

and evaluate the scheme in terms of end-to-end delay, jitters and throughputs. ARROW-TCP

[6] is proposed to address the issues of stability and convergence in existing transmission

control protocols. It uses explicit rate pre-assignment mechanism to obtain ideal performance

of zero queuing delay and free packet loss. Liu et al. [7] propose a new scheme to enhance

TCP performance in the space networks, and the simulation results show that the scheme

greatly improves the throughput and time delay. Although these solutions greatly improve the

bandwidth utilization by optimizing congestion control algorithms, their throughput

enhancements have still been bounded in the networks with bandwidth constrained (e.g.,

residential or wireless networks) or long delay (e.g., satellite) links. This is because it is still

apt to lead to link congestion or packet loss when a large amount of network traffic is

transmitted over the networks with low bandwidth or long delay links. In addition, due to the

fact that the throughput of TCP is inversely proportional to the round-trip time (RTT) of the

networks, the congestion window growth rate would be reduced on the long RTT connections,

thereby resulting in significant throughput degradation in the long delay networks.

Since data compression may increase the amount of application data carried by network

links, it is promising to improve transmission efficiency in the networks with limited

bandwidth or long delay links. Some industrial solutions have included compression technique,

however, due to the proprietary nature of implemented technology there has been limited

published material on the combination of transport protocols and compression systems [8].

Many researches have been done for data aggregation and compression of wireless and

satellite network data [9-12], but the in-depth analysis and design are not given.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 7, NO. 3, Mar. 2013 473

Copyright ⓒ 2013 KSII

Data compression can be deployed on different layers of the network protocol stack. Our

scheme concentrates on the transport layer compression, especially TCP data compression

because of the following advantages:

1) The transport layer compression is transparent to users and applications, while the

application layer scheme needs to modify user applications.

2) Compression at the transport layer could potentially gain higher performance than the

lower network and link layer compressions because it can use larger data block to compress

and reduce the number of transmitted TCP segments, thereby reducing the overhead of TCP

headers and IP headers. In addition, it need not work on hardware thus may not be under

restriction on the processing time of compression scheme [13].

The transport layer compression can bring a lot of benefits, while there are many challenges

in the practical on-the-fly TCP data compression. It could perform ineffective compression on

the hard-to-compress data such as audio and video data, which has been previously

compressed by external processes, since it is unaware of the characteristics of the application

data. It is preferred to use larger data block in the compression to achieve great compression

benefits, while the compressed data size is limited by the Maximum Segment Size (MSS) of

TCP connection. If the compressed data size is larger than the MSS, the compressed data

would be encapsulated into multiple TCP segments in sending, and the receiver would wait

and gather all of the segments to decompress together. This would increase the delivering

latency between the application layer peers. Therefore, the challenging issues for the

on-the-fly TCP data compression include: 1) when to carry out compression, 2) what

compression scheme should be applied to maximize compression efficiency, 3) how to

systematically analyze and evaluate the performance of compression scheme.

In this paper, we propose TCPComp, the on-the-fly TCP data compression scheme. When

arriving at the transport layer, the application data is divided into data blocks and compressed,

and then each compressed data block is encapsulated into a TCP segment. We believe that

TCPComp will result in an immense TCP performance enhancement in the networks with

limited bandwidth or long delay links. Throughout the paper, the term compression ratio refers

to the ratio between the original data size and the compressed data size, and the term

compression unit refers to the application data block to be compressed.

Our main contributions are as follows: Firstly, based on the statistical investigation of the

correlation between some popular network data types and their segment compression ratios,

the compression decision mechanism is introduced to determine which data block can be

compressed. Secondly, for the upcoming data to be compressed, the compression ratio

estimation algorithm is adopted to predict its compression ratio so as to determine proper

compression unit size. Lastly, the assessment criteria for the transport layer compression

scheme are systematically developed.

This paper is organized as follows. In Section 2, we review previous progress on the

network data compression and briefly describe the Kalman Filter. Section 3 details the design

of the TCP data compression scheme. Then experimental results are presented and discussed

in Section 4. Finally, Section 5 concludes the paper by briefly summarizing the main points

and proposing future work.

474 Wang et al.: On-the-fly Data Compression for Efficient TCP Transmission

2. Related work

The candidate layers where compression can be carried out are the application layer, network

layer, link layer and transport layer. In this section, we compare these four candidates. In

addition, the Kalman Filter, which is used to predict the compression ratios of upcoming

application data, is also briefly described in this section.

2.1 Data Compression at the Application Layer

Application layer is the nature place to deploy compression, i.e., data is compressed before

given to the operating system or the TCP/IP stacks for transmission. Compression is proposed

in File transfer protocol (FTP) [14] to effectively reduce the size of printer files such as those

generated by Remote Job Entry (RJE) hosts. Jeannot et al. [15] present an Adaptive Online

Compression library that enables data transmission with compression to improve middleware

performance. Gutwin et al. [16] propose an automatic compression system that minimizes

verbose messages sent by groupware. Experimental results show that these approaches have

high transmission efficiency on wired networks. As the application knows the content, the

most suitable compression algorithm can be chosen to achieve high transmission performance.

However, it is not transparent for both users and applications, and it is impractical to modify

all the user applications in a real world.

2.2 Data Compression at the Network Layer

Network layer compression is applied to TCP segments before adding IP headers. The most

notable packet compression technique is IPComp [17] that has been proposed in RFC 3173.

The protocol is designed to increase the overall communication performance between a pair of

nodes over slow or congested links via compressing IP packet payload. Tan et al. [18] propose

a real-time adaptive packet compression scheme for bandwidth limited high latency networks.

This scheme adopts block compression to increase the compression ratios and reduce network

load. DART [19] is proposed as a rate-based congestion control and scheduling mechanism

with integrated data compression, in which a number of TCP segments may be compressed

jointly to maximize the compression efficiency in the compression engine. Since TCP header

is compressed at the network layer, some of information about the TCP connection such as

port number cannot be recognized when a packet passes a layer-4 switch or firewall. Moreover,

the network layer has to carry out extra compression when a TCP segment is retransmitted.

2.3 Data Compression at the Link Layer

CCP [20] is a compression technique used at the link layer that has been proposed in RFC

1962. The whole packet is compressed before transmitted into the network link and

decompressed at the other end of the link. Chawla et al. [10] design and implement a data

packet compression mechanism for IEEE 802.11 networks and study its impact on the

compression efficiency and throughput. The link layer compression can speed up the delivery

process and provide more efficient utilization of available capacity. But there must be a

compression and a decompression on every physical link in the networks, since the

compression is applied to IP header, which is used for routing packets from sender to receiver.

Compressing IP header on every physical link has a lot of overheads on the network

performance and it must work on hardware..

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 7, NO. 3, Mar. 2013 475

Copyright ⓒ 2013 KSII

2.4 Data Compression at the Transport Layer

Compression could be carried out on user payload within the transport protocols, such as TCP,

before adding TCP headers. A large number of experiments are conducted in [21] to assess the

performance of Cisco devices that employ flow optimization and data compression methods.

Experimental results show multi-fold improvements are achieved in the throughput over the

buffer-tuned TCP both for single and most multiple streams. Lee et al. [22] suggest a

kernel-level TCP data compression scheme, which is transparent to the existing applications

and can provide high-speed wireless communication. This scheme initially explores some of

tricky issues resulting from the kernel-level compression, while it has not represented detail

solutions and deep analysis.

In addition to the above methods, some approaches, independent of specific protocol layers,

are also proposed. Reinhardt et al. [11] present a Squeeze.KOM compression layer for sensor

networks that encapsulates all functions within a separate compression layer. It can be

combined with application level data encoding, energy-aware MAC protocols, data

aggregation mechanisms, or header compression. The aim of this scheme is to preserve energy

by reducing packet sizes and thus minimizing activity periods of the radio transceiver.

However, these complex functions adopted in the compression layer, if not designed carefully,

would not work well together.

2.5 The Kalman Filter

The Kalman Filter [23]bases on the criteria of lease-mean-square error estimation to search for

a recursive estimation algorithm. It supports estimations of past, present, and even future states,

and it can do so even when the precise nature of the modeled system is unknown.

The equations for the Kalman filter fall into two groups: time update equations and

measurement update equations. The specific equations are presented below.

Time Update Equations:

1 1 1

1 1 1 1

ˆ ˆ
k k k k

T

k k k k k

x A x Bu

P A P A Q



  



   

 

 
 (1)

Measurement Update Equations:

1()

ˆ ˆ ˆ()

()

T T

k k k k k k k

k k k k k k

k k k k

K P H H P H R

x x K z H x

P I K H P

  

 



 

  

 
 (2)

where

ˆ kx
is a priori estimate at step k+1given knowledge of the process prior to step k,

kP
is a priori estimate error covariance at step k+1,

ˆ kx is a posteriori state estimate at step k,

476 Wang et al.: On-the-fly Data Compression for Efficient TCP Transmission

kP is a posteriori estimate error covariance at step k,

kK is Kalman Filter gain or blending factor at step k,

1kA  , B and kH are the state matrixes,

kz is a measurement variable at step k,

1ku  is a control input at step k-1,

1kQ  and kR are the process and measurement noise covariance matrixes (respectively).

3. On-the-fly TCP data Compression Scheme (TCPComp)

3.1 Overview

In this section, we briefly describe the overall design of the TCPComp scheme. Fig. 1 shows

the position where TCPComp is applied in the TCP/IP stacks and the architecture of

TCPComp. A 2-byte TCP compression header is employed in each TCPComp segment as

presented in Fig. 2. The compression header is used to indicate the transmission form of the

application data or the compression algorithms used in the TCPComp (e.g. 0 for no

compression, 1 for compression algorithm A, and 2 for compression algorithm B, etc.). We

define the size of TCP MSS excluding the compression header as TCPComp_MSS size, i.e.,

_ _ ()TCPComp MSS size MSS lengthof Hdr  (3)

Fig. 1. The architecture of the TCPComp Scheme

app:ds:%20%20covariance%20matrix

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 7, NO. 3, Mar. 2013 477

Copyright ⓒ 2013 KSII

Fig. 2. The structure of the TCPComp segments

On the sender side, when application data arrives, it will be buffered within the socket layer.

The compression decision mechanism is employed to determine whether to carry out the

compression or not. If not, the data would be transmitted in the original form. Otherwise, a part

of the application data is extracted from the buffer to be compressed and encapsulated in a

TCP segment. The amount of the part of data, i.e., compression unit size, could be determined

by many ways. One direct solution is to compress the application data in the TCPComp_MSS

size, which avoids allocating the additional data buffer. However, the TCPComp_MSS size is

smaller than the MSS size, and the MSS size is limited by the MTU size provided by network

devices, which is around 1500 bytes in many cases. The compression ratios of the application

data would be low when the compression unit size is too small. The TCPComp scheme

determines the compression unit size according to the estimated compression ratio and obtains

proper application data to compress. Meanwhile, it ensures that the compressed data size is no

more than the TCPComp_MSS size so as to be encapsulated in a single TCP segment and then

handed to the lower layer. For the application data of a given size, this method used to

determine the compression unit size could not only achieve greater compression efficiency,

but also reduce the amount of TCP segments and increase the amount of the application data

transmitted in one RTT. If the compressed data size is more than the original data size or the

TCPComp_MSS size, we think the compression has failed, and the data would be sent in the

original form.

On the receiver side, the payload is extracted from a TCP segment, and then the

compression header can be obtained. The total data is extracted and processed according to the

compression header. If it is uncompressed, it would be directly delivered to the application

layer. Otherwise, it would be decompressed according to the used compression algorithm and

delivered to the upper-layer applications. In this study, we focus on the sender side and the

basic idea can be easily extended to the receiver side.

3.2 Dynamical Compression Decision Mechanism

Since TCP is unaware of the characteristics of the application data, it would perform futile

compressions on the data such as audio and video data, which probably has been encoded

deliberately with less redundant information. In such cases, how to determine the data blocks

that can be compressed is a challenge. If the application data is not compressible, the

compression must stop in a timely manner so as not to affect transmission performance. For

this, the compression decision mechanism is applied to determine when to carry out

compressions. The details of the mechanism are described as below.

3.2.1 The Compression Ratios of Different Application Data Types

The type of application data transmitted on Internet usually includes text, audio and video,

etc. We choose nine sets of data among which there are three sets of text data, three sets of

audio data and three sets of video data. None of them has the same contents. The data is

compressed using a constant segment length (equal to 1446 bytes) as compression unit, and

then the first 10,000 compression ratios of each set of data are recorded. Confidence intervals

with a confidence coefficient of 95% for the compression ratios of each set of data are

478 Wang et al.: On-the-fly Data Compression for Efficient TCP Transmission

calculated. Table 1 shows the confidence intervals of compression ratios. It is observed from

Table 1 that the compression ratios of video and audio data are lower than 1.2, while that of

text data are higher than 1.5.

3.2.2 Compression Decision Mechanism

As mentioned before, futile compressions on the data, such as audio and video data, could

be performed and thus great overheads would be brought to data transmission. In order to

reduce the overheads brought by unnecessary compression attempts, the dynamic compression

decision mechanism is applied in TCPComp to avoid futile compressions. The core of the

mechanism is the backoff method. In most cases, the compression ratios of current

compression units could be close to that of the adjacent compression unit due to the

similarities of data from the same flow. If the compression ratios of the data in n consecutive

compression units with the TCPComp_MSS size are lower than a threshold, named CRmin, it

is possible that upcoming application data is also hard-to-compress. Therefore, the process of

backoff starts, i.e., the next m segments are sent without attempting compression. If the

compression ratio of the (m+1) th is still lower than CRmin, maybe there are more segments in

upcoming data would be hard-to-compress. Hence, m, the backoff factor, is multiplied by 2

and the process of backoff continues. As long as a compression ratio is not lower than CRmin,

the normal process of TCPComp restarts.

The value of CRmin is crucial for the compression benefits of the TCPComp scheme. If the

value is too high, the chances that data is transmitted in the compressed form would be reduced,

vice verse the compression benefits may be small due to the unnecessary compression

attempts. An appropriate value should be chosen to obtain the greatest compression benefits

but the least failure numbers. The value of CRmin in our scheme is suggested as 1.2 based on

the results in Table 1.

Table 1. Confidence Interval of Compression Ratios

Data type No. Confidence Interval (Confidence Coefficient = 95%)

 Text data

1 [1.5686, 1.5745]

2 [1.6357, 1.6414]

3 [2.4094, 2.4323]

Video data

1 [1.214, 1.2621]

2 [1.0461, 1.0636]

3 [0.9965, 1.0103]

Audio data

1 [1.0108, 1.0128]

2 [0.9866, 1.0031]

3 [1.003, 1.0376]

In the decision mechanism, once the compressed data size is larger than the original data

size or the TCPComp_MSS size, the compression is thought to fail. Thus the data must be sent

in the original form. As long as the compressed data size is smaller than the original data size,

the data will be transmitted in the compressed form.

3.3 Compression Ratio Estimation Algorithm Based on Kalman Filter

The data compression ratios highly depend on the compression unit size. A larger compression

unit generally results in a better compression ratio. An optimal compression unit size should

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 7, NO. 3, Mar. 2013 479

Copyright ⓒ 2013 KSII

be utilized to achieve great compression efficiency. We estimate the compression ratios of

upcoming application data based on Kalman Filter, and then the size of the i-th compression

unit is determined as Equation (4)

* _ , 1,2,3,...i iorig_size target_size est CR i  (4)

where _ iest CR is an estimated compression ratio of upcoming application data. The

target_size is the expected size of the compressed data，and it should be no more than the

TCPComp_MSS size according to the presentation depicted in the introduction. The optimal

value of target_size in our scheme will be discussed in Section 4. In this section, we will

explore the issue of the compression ratio estimation supposing the value of target size is

fixed.

In most cases, the compression ratios of current compression units could be close to that of

the nearest compression unit due to the similarities of data from the same flow. Therefore, a

conservational estimation of compression ratios is expected to avoid compression failures

induced by overestimated compression ratios. In Equations (1) and (2), we set the

parameters kA , B and kH as unit matrixes, and 1ku  , 1kQ  and kR as constants. Based on

Kalman Filter, we derive the specific equations for estimating compression ratios as follows:

Time Update Equations:

1

1 1

_ _k kk

k k k

est CR est CR u

P P Q







 

 

 
 (5)

Measurement Update Equations:

1

/ ()

_ _ (_)

(1)*

1,2,3,...

k k k k

k k k k k

k k k

K P P R

est CR est CR K CR est CR

P K P

k

 

 





 

  

 



 (6)

where

_ kest CR
is a priori compression ratio estimate at step k,

_ kest CR is a compression ratio estimate at step k,

kCR is a true compression ratio at step k,

The definitions of other parameters are same as that in Equations (1) and (2).

Once the data in the compression unit is transmitted in the compressed form, its true

compression ratio is recorded and utilized to estimate the next one by Equations (5) and (6).

480 Wang et al.: On-the-fly Data Compression for Efficient TCP Transmission

The new estimate will be adopted to calculate the next compression unit size by Equation (4).

If the compression fails, the compression ratio estimation would be restarted.

4. Performance Evaluation

In this section, We follow a threefold experimental methodology: 1) three metrics are

presented to evaluate the TCP compression scheme, 2)the optimal value of target-size is

discussed according to the above presented metrics, 3) the performance of TCPComp is

compared with the kernel-level compression scheme [22] and the standard TCP by the

transmission time over real network environment.

4.1 Metrics Definition

Compression overheads differ from each other due to hardware and software related factors.

Therefore a set of metrics for a TCP data compression scheme is required to provide a more

timely understanding of data transmission in the view of compression benefits, and it is also

possible to offer a chance to explore new approaches for more transmission performance. We

present three metrics: segment count, compression efficiency and compression failure number,

which can demonstrate the transmission performance of the TCP compression schemes

systematically. The definitions of these metrics are as follows.

Definition1: If the compressed data size is no more than the TCPComp_MSS size, the

TCPComp scheme would encapsulate the chunk of compressed data and the compression

header with a TCP header, thereby forming a TCP segment. For certain application data of a

given size, the total number of these segments is referred as segment count. The larger the

segment count is, the greater the overheads of TCP and IP headers would be.

Definition2: For certain application data of a given size, when the TCPComp scheme is

applied, the ratio between the amount of the application data and the sum of all transmitted

TCP payloads excluding the compression headers is referred as compression efficiency. When

TCPComp is adopted, the sum of all TCP payloads would be no more than the amount of

uncompressed user data, i.e., compression efficiency should not be smaller than 1.0. The

higher the compression efficiency is, the less the data transmitted over the links would be.

Definition3: The TCPComp scheme grabs the application data with a compression unit size

to carry out a compression. If the compressed data size is more than the TCPComp_MSS size

or the original data size, we think this compression process has failed. The third metric is the

number of compression failures referred as failure count. For certain application data of a

given size, the larger the failure count is, the greater the extra overheads of compression

process would be.

4.2 Experimental System Setup

The TCPComp scheme is implemented in the Linux (kernel version 3.1.4). Fig. 3 shows the

experimental system setup. The three clients apply the standard TCP, kernel-level

compression scheme and the TCPComp scheme, respectively, and all of them are equipped

with Intel Pentium E5300 2.60GHZ processors and 2GB DDR2. The three servers are PCs

equipped with Intel Xeon E7-8870 2.40GHZ processors and 1GB DDR3. The Internet access

rates are 6 Mbps, and RTT between senders and receivers is about 100ms, which is the main

characteristic of the high latency networks. Clients send data; the servers receive data and

carry out corresponding decompression process.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 7, NO. 3, Mar. 2013 481

Copyright ⓒ 2013 KSII

Lossless compression schemes which can be applied to arbitrary data types with the ability

to fully recover the contents by decompression. In our experiments, the Zip algorithm, an

efficient lossless compression algorithm, is employed as the basic compression method. Other

compression algorithms can be employed in a similar way.

Client 1

Client 2

Client 3

Server 3

Server 2

Server 1Internet

Fig. 3. Experimental system for TCPComp

4.3 Discussion of target_size Parameter

In order to optimize the performances of our scheme, we discuss the target_size based on the

metrics presented in Section 4.1. As the compression ratios of text data are generally higher, it

is possible for them to be sensitive to the value of target_size. Four text files are used in our

experiments for determining the optimal value of target_size. The former three text files are

obtained from the Canterbury Corpus [24], and the fourth is the Yahoo home page in the

HTML format. The basic information about them is shown in Table 2. The MSS is 1448 bytes

and TCPComp_MSS size is 1446 bytes in our experiment environment. Fig. 4 shows the

impact of the values of target_size on the performance of TCPComp as the target_size is

enumerated from 100 bytes to 1600 bytes with step of 50 bytes.

Table 2. Basic information of the example files

Filename File size (bytes) Specification

bible.txt 4,047,392 The King James version of the bible

E.coli 4,638,690 Complete genome of the E.coli Bacterium

pi.doc 1,031,680 The first million digits of pi

Yahoo.htm 305,279 The Yahoo home page

As we can observe from Fig. 4, the segment count and failure number of all files decrease

with the increases of target_size until it reaches 1400 bytes, meanwhile, the compression

efficiency increases with the increases of target_size. Since the compression unit size would

be increased with the increase of target_size, higher compression ratios could be achieved, i.e.,

higher performance in term of the three metrics. However, the situation changes when

target_size is larger than 1400 bytes. Too large target_size would result in a consequence that

compressed data could be larger than the TCPComp_MSS size due to the estimation errors,

and thus this compression process fails. As a result, the segment count and failure number

increase and the compression efficiency decreases when target_size is close to the

TCPComp_MSS size. In this context, 1400 bytes is the optimal target_size in our experiment.

The values of the MSS could be distinct for different network conditions and so is the

TCPcomp_MSS. Thus the value of target_size can be calculated by Equation (7). When

482 Wang et al.: On-the-fly Data Compression for Efficient TCP Transmission

TCPComp_MSS size is 1446 bytes, 1400 bytes is the optimal target_size as shown in Fig. 4.

Divide 1400 by 1446 and we get about 0.95 as the empirical value of “a” in Equation (7).

* _ , 0 1target_size a TCPComp MSS a   (7)

Fig. 4. Impact of the value of target_size on the performance of TCPComp

4.4 Experimental Evaluation of CR Estimation Algorithm

As mentioned in Section 3.3, TCPComp applies Kalman Filter to the compression ratio

estimation. To evaluate the performance of the compression ratio estimation algorithm, all

compression ratio estimates and the true compression ratios in the experiments are recorded

and compared in Fig. 5. CR is referred as the compression ratio. The results show that the

variation tendency of compression ratio estimates is overall in line with that of the true

compression ratios, and the compression ratio estimates are basically near the true

compression ratios. Enough application data can be obtained and compressed successfully due

to the accuracy of the compression ratio estimation algorithm. Therefore, the compression

ratio estimation based on Karlman Filter helps to increase compression efficiency and

decrease compression failure number in the TCPComp scheme.

4.5 Performance Comparison with Other Schemes

For the evaluation of transmission performance, we employ three different kinds of data: text,

multimedia, and hybrid data in the experiments. The text data comes from a few world classic

novels in English; the multimedia data comes from a movie, The Godfather Part II, in the

RMVB format; and the hybrid data is obtained from the webpage of Yahoo sports, including

text, video, audio data and pictures. The clients deploy the standard TCP, the kernel-level

app:ds:variation%20tendency

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 7, NO. 3, Mar. 2013 483

Copyright ⓒ 2013 KSII

compression scheme and the TCPComp scheme, respectively. They send the same data to the

servers at the same time. Table 3 shows the parameters for TCPComp in our performance

evaluation experiments.

Fig. 5. Comparison between CR estimates and true CRs

Table 3. The parameter configuration for TCPComp

Component Parameter Parameter Value

Compression

decision

CRmin 1.2

n 5

m 5

Compression ratio

estimation

P0 10

uk 10
-3

Qk 10
-6

Rk 10
-1

target_size 1400 bytes

We compare the performance of the three schemes in term of segment count, compression

efficiency and transmission time. Figs. 6-8 demonstrate that the performance of TCPComp on

transmitting the text data. From Fig. 6, the average segment count in the TCPComp scheme is

reduced by about 43.58% comparing with the standard TCP and about 43.74% comparing

with the kernel-level compression scheme, which would result in the decrease of the

overheads of TCP and IP headers. While the segment count in the kernel-level compression

scheme is slightly more than that in the standard TCP. This is because the kernel-level

compression scheme deploys the 4-byte compression headers, and the total size of the

compression unit and the compression header is no more than the MSS size. Additional header

overheads increase the amount of TCP segments. In Fig. 7 the maximum CR denotes the

484 Wang et al.: On-the-fly Data Compression for Efficient TCP Transmission

compression ratios of the whole experimental data compressed using the Zip algorithm at the

application layer. Due to employing the compression ratio estimation algorithm based on

Kalman Filter, the compression efficiency in the TCPComp scheme is twice as much as that in

the standard TCP and a little higher than that in the kernel-level compression scheme. For the

same application data, higher compression efficiency indicates that less data is transmitted

over the links. This would help to alleviate network congestion and reduce the chances of

packet drops and the amount of packet retransmissions at the same network conditions.

Therefore, the transmission performance would be significantly enhanced. As shown in Fig. 8,

the transmission time of text data in TCPComp is less than that in the kernel-level compression

scheme and in the standard TCP, and it is worth noting that the transmission time in TCPComp

is about half of that in the standard TCP.

Fig. 6. The segment count of transmitted text data

Fig. 7. The compression efficiency of transmitted text data

For hybrid data, which includes text and multimedia data, overall the performance of

TCPComp is still better than that of two others. It is observed in Fig. 9 that the maximum CR

of hybrid data is significantly less than that of text data. This is because there are some

non-compressible data such as videos and pictures in the hybrid data. The hybrids of

application data with different types and context could result in a large number of estimation

errors, thus the compression ratio estimation algorithm does not work as efficiently as in the

case of text data. Nevertheless, the compression efficiency in TCPComp is higher than that in

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 7, NO. 3, Mar. 2013 485

Copyright ⓒ 2013 KSII

two others because TCPComp can distinguish compressible data from the hybrid data and

carry out compression by the compression decision mechanism proposed in Section 3.2. Fig.

10 shows that the transmission time of hybrid data in TCPComp is still less than that in the

kernel-level compression scheme and the standard TCP. Moreover, the segment count in

TCPComp is comparable with that in two others, i.e., it does not increase the segment count.

Fig. 8. The transmission time of text data

Fig. 9. The compression efficiency of transmitted hybrid data

Fig. 10. The transmission time of hybrid data

486 Wang et al.: On-the-fly Data Compression for Efficient TCP Transmission

For the multimedia data, which is usually hard to compress, the performance of TCPComp

is comparable with two others as shown in Fig. 11. Extra process overheads are reduced

because of the backoff method presented in Section 3.2.2. Fig. 12 demonstrates that the

backoff method significantly decreases the overheads for the multimedia data in term of the

compression failure number.

Fig. 11. The transmission time of multimedia data

Fig. 12. The failure number comparison of TCPComp with and without backoff

5 Conclusions and Future Work

Data compression at the transport layer is potential to improve transmission efficiency in a low

bandwidth or high delay network since it can reduce transmitted bytes over network links and

increase transmitted application data in one RTT at the same network conditions. We propose

a TCP data compression scheme (TCPComp) to enhance TCP performance. This scheme

determines which compression unit can be compressed by the compression decision

mechanism, and determines the compression unit size by the compression ratio estimation

algorithm.

It is observed through experiments in the real network environment that though

transmission time saving depends on statistics of the data and its content, overall TCPComp

outperforms the kernel-level compression scheme and the standard TCP. When transmitting

text data, huge performance gain can be brought due to the compression ratio estimation

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 7, NO. 3, Mar. 2013 487

Copyright ⓒ 2013 KSII

algorithm. In the case of the multimedia data and the hybrid data, it achieves comparable

performance with the two others due to efficient compression decision mechanism.

It is inevitable that compression would introduce some latency due to the intensive

computation and memory access to compress and decompress data. However, since the

backoff method in the compression decision mechanism could reduce extra process overheads,

TCPComp can be applied in WANs, in particular the networks with long delay. Moreover, as

TCPComp decreases the transmitted bytes over network links and thereby reducing the energy

consumption of sensor nodes, it can also be applied in wireless sensor networks.

In our scheme, the Zip algorithm has been applied due to its high compression ratio. As

future work, we intent to extend the TCPComp scheme based on its architecture by integrating

a greater variety of compression algorithms.

References

[1] V. Jacobson, “Congestion Avoidance and Control,” ACM SIGCOMM Computer Communication

Review, vol. 18, no. 4, pp. 314–329, August, 1988. Article (CrossRef Link).

[2] S. Mascolo, C. Casetti, M. Gerla, M.Y. Sanadidi and R. Wang, “TCP Westwood: Bandwidth

estimation for enhanced transport over wireless links,” in Proc. of the 7th annual international

conference on Mobile computing and networking, pp. 287–297, July 16-21, 2001. Article

(CrossRef Link).

[3] I.F. Akyildiz, X. Zhang and J. Fang, “TCP-Peach+: enhancement of TCP-Peach for satellite IP

networks,” IEEE Communications Letters, vol. 6, no. 7, pp. 303–305, July, 2002. Article

(CrossRef Link).

[4] M. Podlesny and C. Williamson, “Improving TCP performance in residential broadband networks:

a simple and deployable approach,” ACM SIGCOMM Computer Communication Review, vol. 42,

no. 1, pp. 61–68, January, 2012. Article (CrossRef Link).

[5] F. Y. Leu, F. L. Jenq and F. C. Jiang, “A Path Switching Scheme for SCTP Based on Round Trip

Delays,” Computers and Mathematics With Applications, vol. 62, no. 9, pp. 3504–3523,

November, 2011. Article (CrossRef Link).

[6] J. Wang, L. Rong, X. Zhang and J. Chen, “ARROW-TCP: Accelerating Transmission toward

Efficiency and Fairness for High-speed Networks,” in Proc. of the IEEE Global

Telecommunications Conference, pp. 1–6, 30 Nov. - 4 Dec., 2009. Article (CrossRef Link).

[7] Y. Liu, C. He, X. Ge, Y. Dong and Z. Li, “A new scheme for improving the TCP transmission

efficiency in space network,” in Proc. of the Second International Conference on Space

Information Technology, pp. 1–5, Nov. 10-11, 2007. Article (CrossRef Link).

[8] William B. Sebastian et al., Methods and Systems for Performing TCP Throttle, Patent No.: US

7911948B2, March 22, 2011.

[9] F. Marcelloni and M. Vecchio, “A simple algorithm for data compression in wireless sensor

networks,” IEEE Communications Letters, vol. 12, no. 6, pp. 411–413. June, 2008. Article

(CrossRef Link).

[10] S. Chawla and B. S. Manoj, “Dynamic data compression in wireless networks,” in Proc. of IEEE

5th International Conference on Advanced Networks and Telecommunication Systems (ANTS), pp.

1–3, Dec. 18-21, 2011. Article (CrossRef Link).

[11] A. Reinhardt, M. Hollick and R. Steinmetz, “Stream-oriented lossless packet compression in

wireless sensor networks,” in Proc. of the 6th Annual IEEE Communications Society Conference

on Sensor, Mesh and Ad Hoc Communications and Networks (SECON'09),.pp. 1–9, June 22-26,

2009. Article (CrossRef Link).

[12] L. S. Tan, S. P. Lau and C. E. Tan, “Quality of Service Enhancement via compression technique

for congested low bandwidth network,” in Proc. of IEEE 10th International Conference on

Communications (MICC), pp. 71–76, October 2-5, 2011. Article (CrossRef Link).

[13] L. Wang and J. Manner, “Evaluation of data compression for energy-aware communication in

http://dl.acm.org/citation.cfm?id=52356
http://dl.acm.org/citation.cfm?id=381704
http://dl.acm.org/citation.cfm?id=381704
http://dx.doi.org/10.1109/LCOMM.2002.801317
http://dx.doi.org/10.1109/LCOMM.2002.801317
http://dx.doi.org/10.1145/2096149.2096158
http://dx.doi.org/10.1016/j.camwa.2011.08.066
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5426148&tag=1
http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=830409
http://dx.doi.org/10.1109/LCOMM.2008.080300
http://dx.doi.org/10.1109/LCOMM.2008.080300
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6163657
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5168975
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6150302

488 Wang et al.: On-the-fly Data Compression for Efficient TCP Transmission

mobile networks,” in Proc. of International Conference on Cyber-Enabled Distributed Computing

and Knowledge Discovery (CyberC'09), pp. 69–76, October 10-11, 2009. Article (CrossRef Link).

[14] J. Postel and J. Reynolds, “FILE Transfer Protocol (FTP),” IETF, Network Working Group,

RFC959, October, 1985. Article (CrossRef Link).

[15] E. Jeannot et al., “Improving Middleware Performance with AdOC: An Adaptive Online

Compression Library for Data Transfer,” in Proc. of the 19th IEEE International Parallel and

Distributed Processing Symposium (IPDPS’05), pp. 70–79, April 3-8, 2005. Article (CrossRef

Link).

[16] C. Gutwin, C. Fedak, M. Watson, J. Dyck and T. Bell, “Improving Network Efficiency in

Real-Time Groupware with General Message Compression,” in Proc. of ACM 20th anniversary

conference on Computer supported cooperative work (CSCW 2006), pp. 119–128, November 4,

2006. Article (CrossRef Link).

[17] A. Shacham et al., “IP Payload Compression Protocol,” IETF, Network Working Group, RFC 3173,

September 2001. Article (CrossRef Link).

[18] L. S. Tan, S. P. Lau and C. E. Tan, “Enhanced compression scheme for high latency networks to

improve quality of service of real-time applications,” in Proc. of the 8th Asia-Pacific Symposium

on Information and Telecommunication Technologies (APSITT), pp. 1–6, June 15-18, 2010.

Article (CrossRef Link).

[19] T. Iyer, R. Boreli, G. Sarwar and C. Dwertmann, “DART: enhancing data acceleration with

compression for satellite links,” in Proc. of IEEE Global Telecommunications Conference

(GLOBECOM 2009), pp. 1–6, Nov. 30 -Dec. 4, 2009. Article (CrossRef Link).

[20] D. Rand, “The PPP Compression Control Protocol (CCP),” IETF, Network Working Group, RFC

1962, June 1996. Article (CrossRef Link).

[21] N. S. V. Rao, S. W. Poole, W. R. Wing and S. M. Carter, “Experimental analysis of flow

optimization and data compression for TCP enhancement,” in Proc. of IEEE INFOCOM

Workshops, pp. 115–120, April 19-25, 2009. Article (CrossRef Link).

[22] M. Y. Lee, H. W. Jin, I. Kim and T. Kim, “Improving TCP Goodput over Wireless Networks

Using Kernel-Level Data Compression,” in Proc. of the 18th International Conference on

Computer Communications and Networks (ICCCN 2009), pp. 1–6, August 3-6, 2009. Article

(CrossRef Link).

[23] R. E. Kalman, “A New Approach to Linear Filtering and Prediction Problems,” Journal of Basic

Engineering, vol. 82, no. 1, pp. 35–45, March, 1960. Article (CrossRef Link).

[24] The Canterbury Corpus file for testing new compression algorithms. Available at

http://corpus.canterbury.ac.nz/index.html.

Min Wang received the M.S. degree in Computational Mathematics from Yunnan

University in 2004. She is currently a Ph.D. student at the College of Computer

Science, Sichuan University. Her research interests cover a wide variety of topics in

wireless and satellite networks, with emphasis on design of transport layer protocols

for wireless networks.

Junfeng Wang received the M.S. degree in Computer Application Technology from

Chongqing University of Posts and Telecommunications, Chongqing in 2001 and

Ph.D. degree in Computer Science from University of Electronic Science and

Technology of China, Chengdu in 2004. From July 2004 to August 2006, he held a

postdoctoral position in Institute of Software, Chinese Academy of Sciences. From

August 2006, Dr Wang is with the College of Computer Science, Sichuan University

as a professor. His recent research interests include spatial information networks,

network and information security, and intelligent transportation system.

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5342172
http://tools.ietf.org/html/rfc959:33b5e5rq
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1419896
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1419896
http://dl.acm.org/citation.cfm?id=1180894
http://tools.ietf.org/html/rfc2393.html
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5532058
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5426031
http://tools.ietf.org/html/1962
http://dl.acm.org/citation.cfm?id=1719870
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5235247
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5235247
http://dx.doi.org/10.1115/1.3662552

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 7, NO. 3, Mar. 2013 489

Copyright ⓒ 2013 KSII

Xuan Mou received the B.S. degree in Information and Computing Sciences from

Hubei University for Nationalities of China, Enshi in 2011. He is currently a M.S.

student at the College of Computer Science, Sichuan University. His research interests

include wireless and satellite networks, with emphasis on design of transport layer

protocols for wireless networks.

Sunyoung Han received the B.S. degree in computer science from Seoul National

University, and M.S. and Ph.D. degree in computer science from KAIST, Seoul,

Korea, in 1977, 1979 and 1988, respectively. Since 1981, he is a professor of the

Department of Computer Science and Engineering, Konkuk University, Seoul, Korea.

He was a Dean of College of Information & Telecommunication, Konkuk University

from Sept. 2004 to Feb. 2009. His research interests include overlay networks, future

Internet, mobile Internet, IP Multicasting, vehicular networks and real-time

distributed communication systems.

