DOI QR코드

DOI QR Code

Development of a Bioconversion System Using Saccharomyces cerevisiae Reductase YOR120W and Bacillus subtilis Glucose Dehydrogenase for Chiral Alcohol Synthesis

  • Yoon, Shin Ah (Division of Biotechnology, The Catholic University of Korea) ;
  • Kim, Hyung Kwoun (Division of Biotechnology, The Catholic University of Korea)
  • Received : 2013.05.14
  • Accepted : 2013.06.13
  • Published : 2013.10.28

Abstract

Reductases convert some achiral ketone compounds into chiral alcohols, which are important materials for the synthesis of chiral drugs. The Saccharomyces cerevisiae reductase YOR120W converts ethyl-4-chloro-3-oxobutanoate (ECOB) enantioselectively into (R)-ethyl-4-chloro-3-hydroxybutanoate ((R)-ECHB), an intermediate of a pharmaceutical. As YOR120W requires NADPH as a cofactor for the reduction reaction, a cofactor recycling system using Bacillus subtilis glucose dehydrogenase was employed. Using this coupling reaction system, 100 mM ECOB was converted to (R)-ECHB. A homology modeling and site-directed mutagenesis experiment were performed to determine the NADPH-binding site of YOR120W. Four residues (Q29, K264, N267, and R270) were suggested by homology and docking modeling to interact directly with 2'-phosphate of NADPH. Among them, two positively charged residues (K264 and R270) were experimentally demonstrated to be necessary for NADPH 2'-phosphate binding. A mutant enzyme (Q29E) showed an enhanced enantiomeric excess value compared with that of the wild-type enzyme.

Keywords

References

  1. Aragozzini F, Valenti M, Santaniello E, Ferraboschi P, Grisenti P. 1992. Biocatalytic, enantioselective preparations of (R)- and (S)-ethyl 4-chloro-3-hydroxybutanoate, a useful chiral synthon. Biocatal. Biotransform. 5: 325-332. https://doi.org/10.3109/10242429209014878
  2. Campbell E, Wheeldon IR, Banta S. 2010. Broadening the cofactor specificity of a thermostable alcohol dehydrogenase using rational protein design introduces novel kinetic transient behavior. Biotechnol. Bioeng. 107: 763-774. https://doi.org/10.1002/bit.22869
  3. Choi YH, Choi HJ, Kim D, Uhm KN, Kim HK. 2010. Asymmetric synthesis of (S)-3-chloro-1-phenyl-1-propanol using Saccharomyces cerevisiae reductase with high enantioselectivity. Appl. Microbiol. Biotechnol. 87: 185-193. https://doi.org/10.1007/s00253-010-2442-5
  4. Cundari TR, Dinescu A, Zhu D, Hua L. 2007. A molecular modeling study on the enantioselectivity of aryl alkyl ketone reductions by a NADPH-dependent carbonyl reductase. J. Mol. Model. 13: 685-690. https://doi.org/10.1007/s00894-007-0168-9
  5. Goldberg K, Schroer K, Lutz S, Liese A. 2007. Biocatalytic ketone reduction - a powerful tool for the production of chiral alcohols. Part I: processes with isolated enzymes. Appl. Microbiol. Biotechnol. 76: 237-248. https://doi.org/10.1007/s00253-007-1002-0
  6. Hossein-Zadeh NG, Ardalan M. 2011. Evaluation of the potential effects of abortion on the productive performance of Iranian Holstein dairy cows. Anim. Sci. J. 82: 117-121. https://doi.org/10.1111/j.1740-0929.2010.00802.x
  7. Huisman GW, Liang J, Krebber A. 2010. Practical chiral alcohol manufacture using ketoreductases. Curr. Opin. Chem. Biol. 14: 122-129. https://doi.org/10.1016/j.cbpa.2009.12.003
  8. Jung J, Park HJ, Uhm KN, Kim D, Kim HK. 2010. Asymmetric synthesis of (S)-ethyl-4-chloro-3-hydroxy butanoate using a Saccharomyces cerevisiae reductase: enantioselectivity and enzyme-substrate docking studies. Biochim. Biophys. Acta 1804: 1841-1849. https://doi.org/10.1016/j.bbapap.2010.06.011
  9. Jung J, Park S, Kim HK. 2012. Synthesis of a chiral alcohol using a rationally designed Saccharomyces cerevisiae reductase and a NADH cofactor regeneration system. J. Mol. Catal. B Enzym. 84: 15-21. https://doi.org/10.1016/j.molcatb.2012.01.016
  10. Kamitori S, Iguchi A, Ohtaki A, Yamada M, Kita K. 2005. X-Ray structures of NADPH-dependent carbonyl reductase from Sporobolomyces salmonicolor provide insights into stereoselective reductions of carbonyl compounds. J. Mol. Biol. 352: 551-558. https://doi.org/10.1016/j.jmb.2005.07.011
  11. Kataoka M, Yamamoto K, Kawabata H, Wada M, Kita K, Yanase H, et al. 1999. Stereoselective reduction of ethyl 4-chloro-3-oxobutanoate by Escherichia coli transformant cells coexpressing the aldehyde reductase and glucose dehydrogenase genes. Appl. Microbiol. Biotechnol. 51: 486-490. https://doi.org/10.1007/s002530051421
  12. Katzberg M, Skorupa-Parachin N, Gorwa-Grauslund MF, Bertau M. 2010. Engineering cofactor preference of ketone reducing biocatalysts: a mutagenesis study on a gammadiketone reductase from the yeast Saccharomyces cerevisiae serving as an example. Int. J. Mol. Sci. 11: 1735-1758. https://doi.org/10.3390/ijms11041735
  13. Liu Y , Xu Z , Jing K, Jiang X, Lin J, W ang F, et al. 2005. Asymmetric reduction of ethyl 4-chloro-3-oxobutanoate to ethyl (R)-4-chloro-3-hydroxybutanoate with two co-existing, recombinant Escherichia coli strains. Biotechnol. Lett. 27: 119-125. https://doi.org/10.1007/s10529-004-7336-0
  14. Machielsen R, Leferink NG, Hendriks A, Brouns SJ, Hennemann HG, Daussmann T, et al. 2008. Laboratory evolution of Pyrococcus furiosus alcohol dehydrogenase to improve the production of (2S,5S)-hexanediol at moderate temperatures. Extremophiles 12: 587-594. https://doi.org/10.1007/s00792-008-0164-8
  15. Moore JC, Pollard DJ, Kosjek B, Devine PN. 2007. Advances in the enzymatic reduction of ketones. Acc. Chem. Res. 40: 1412-1419. https://doi.org/10.1021/ar700167a
  16. Nakamura K, Yamanaka R, Matsuda T, Harada T. 2003. Recent developments in asymmetric reduction of ketones with biocatalysts. Tetrahedron Asymmetry 14: 2659-2681. https://doi.org/10.1016/S0957-4166(03)00526-3
  17. Ni Y, Li CX, Wang LJ, Zhang J, Xu JH. 2011. Highly stereoselective reduction of prochiral ketones by a bacterial reductase coupled with cofactor regeneration. Org. Biomol. Chem. 9: 5463-5468. https://doi.org/10.1039/c1ob05285c
  18. Ni Y, Xu JH. 2012. Biocatalytic ketone reduction: a green and efficient access to enantiopure alcohols. Biotechnol. Adv. 30: 1279-1288. https://doi.org/10.1016/j.biotechadv.2011.10.007
  19. Park HJ, Jung J, Choi H, Uhm KN, Kim HK. 2010. Enantioselective bioconversion using Escherichia coli cells expressing Saccharomyces cerevisiae reductase and Bacillus subtilis glucose dehydrogenase. J. Microbiol. Biotechnol. 20: 1300-1306. https://doi.org/10.4014/jmb.1003.03025
  20. Richter N, Hummel W. 2011. Biochemical characterisation of a NADPH-dependent carbonyl reductase from Neurospora crassa reducing alpha- and beta-keto esters. Enzyme Microb. Technol. 48: 472-479. https://doi.org/10.1016/j.enzmictec.2011.02.004
  21. Stampfer W, Edegger K, Kosjek B, Faber K, Kroutil W. 2004. Simple biocatalytic access to enantiopure (S)-1-heteroarylethanols employing a microbial hydrogen transfer reaction. Adv. Synth. Catal. 346: 57-62. https://doi.org/10.1002/adsc.200303210
  22. Yoon SA, Jung J, Park S, Kim HK. 2013. Development of Saccharomyces cerevisiae reductase YOL151W mutants suitable for chiral alcohol synthesis using an NADH cofactor regeneration system. J. Microbiol. Biotechnol. 23: 218-224. https://doi.org/10.4014/jmb.1209.09059
  23. Zhang R, Xu Y, Sun Y, Zhang W, Xiao R. 2009. Ser67Asp and His68Asp substitutions in Candida parapsilosis carbonyl reductase alter the coenzyme specificity and enantioselectivity of ketone reduction. Appl. Environ. Microbiol. 75: 2176-2183. https://doi.org/10.1128/AEM.02519-08
  24. Zhu D, Hua L. 2010. How carbonyl reductases control stereoselectivity: approaching the goal of rational design. Pure Appl. Chem. 82: 117-128. https://doi.org/10.1351/PAC-CON-09-01-03

Cited by

  1. Effects of N-/C-Terminal Extra Tags on the Optimal Reaction Conditions, Activity, and Quaternary Structure of Bacillus thuringiensis Glucose 1-Dehydrogenase vol.26, pp.10, 2013, https://doi.org/10.4014/jmb.1603.03021
  2. Improved NADPH Regeneration for Fungal Cytochrome P450 Monooxygenase by Co-Expressing Bacterial Glucose Dehydrogenase in Resting-Cell Biotransformation of Recombinant Yeast vol.26, pp.12, 2016, https://doi.org/10.4014/jmb.1605.05090
  3. Mutagenesis of Key Residues in the Binding Center of l‐Aspartate‐β‐Semialdehyde Dehydrogenase from Escherichia coli Enhances Utilization of the Cofactor NAD(H) vol.17, pp.1, 2013, https://doi.org/10.1002/cbic.201500534
  4. Efficient biosynthesis of enantiopure tolvaptan by utilizing alcohol dehydrogenase-catalyzed enantioselective reduction vol.20, pp.6, 2013, https://doi.org/10.1039/c7gc03679e
  5. Genome mining, in silico validation and phase selection of a novel aldo-keto reductase from Candida glabrata for biotransformation vol.9, pp.1, 2018, https://doi.org/10.1080/21655979.2017.1342911