References
- Aragozzini F, Valenti M, Santaniello E, Ferraboschi P, Grisenti P. 1992. Biocatalytic, enantioselective preparations of (R)- and (S)-ethyl 4-chloro-3-hydroxybutanoate, a useful chiral synthon. Biocatal. Biotransform. 5: 325-332. https://doi.org/10.3109/10242429209014878
- Campbell E, Wheeldon IR, Banta S. 2010. Broadening the cofactor specificity of a thermostable alcohol dehydrogenase using rational protein design introduces novel kinetic transient behavior. Biotechnol. Bioeng. 107: 763-774. https://doi.org/10.1002/bit.22869
- Choi YH, Choi HJ, Kim D, Uhm KN, Kim HK. 2010. Asymmetric synthesis of (S)-3-chloro-1-phenyl-1-propanol using Saccharomyces cerevisiae reductase with high enantioselectivity. Appl. Microbiol. Biotechnol. 87: 185-193. https://doi.org/10.1007/s00253-010-2442-5
- Cundari TR, Dinescu A, Zhu D, Hua L. 2007. A molecular modeling study on the enantioselectivity of aryl alkyl ketone reductions by a NADPH-dependent carbonyl reductase. J. Mol. Model. 13: 685-690. https://doi.org/10.1007/s00894-007-0168-9
- Goldberg K, Schroer K, Lutz S, Liese A. 2007. Biocatalytic ketone reduction - a powerful tool for the production of chiral alcohols. Part I: processes with isolated enzymes. Appl. Microbiol. Biotechnol. 76: 237-248. https://doi.org/10.1007/s00253-007-1002-0
- Hossein-Zadeh NG, Ardalan M. 2011. Evaluation of the potential effects of abortion on the productive performance of Iranian Holstein dairy cows. Anim. Sci. J. 82: 117-121. https://doi.org/10.1111/j.1740-0929.2010.00802.x
- Huisman GW, Liang J, Krebber A. 2010. Practical chiral alcohol manufacture using ketoreductases. Curr. Opin. Chem. Biol. 14: 122-129. https://doi.org/10.1016/j.cbpa.2009.12.003
- Jung J, Park HJ, Uhm KN, Kim D, Kim HK. 2010. Asymmetric synthesis of (S)-ethyl-4-chloro-3-hydroxy butanoate using a Saccharomyces cerevisiae reductase: enantioselectivity and enzyme-substrate docking studies. Biochim. Biophys. Acta 1804: 1841-1849. https://doi.org/10.1016/j.bbapap.2010.06.011
- Jung J, Park S, Kim HK. 2012. Synthesis of a chiral alcohol using a rationally designed Saccharomyces cerevisiae reductase and a NADH cofactor regeneration system. J. Mol. Catal. B Enzym. 84: 15-21. https://doi.org/10.1016/j.molcatb.2012.01.016
- Kamitori S, Iguchi A, Ohtaki A, Yamada M, Kita K. 2005. X-Ray structures of NADPH-dependent carbonyl reductase from Sporobolomyces salmonicolor provide insights into stereoselective reductions of carbonyl compounds. J. Mol. Biol. 352: 551-558. https://doi.org/10.1016/j.jmb.2005.07.011
- Kataoka M, Yamamoto K, Kawabata H, Wada M, Kita K, Yanase H, et al. 1999. Stereoselective reduction of ethyl 4-chloro-3-oxobutanoate by Escherichia coli transformant cells coexpressing the aldehyde reductase and glucose dehydrogenase genes. Appl. Microbiol. Biotechnol. 51: 486-490. https://doi.org/10.1007/s002530051421
- Katzberg M, Skorupa-Parachin N, Gorwa-Grauslund MF, Bertau M. 2010. Engineering cofactor preference of ketone reducing biocatalysts: a mutagenesis study on a gammadiketone reductase from the yeast Saccharomyces cerevisiae serving as an example. Int. J. Mol. Sci. 11: 1735-1758. https://doi.org/10.3390/ijms11041735
- Liu Y , Xu Z , Jing K, Jiang X, Lin J, W ang F, et al. 2005. Asymmetric reduction of ethyl 4-chloro-3-oxobutanoate to ethyl (R)-4-chloro-3-hydroxybutanoate with two co-existing, recombinant Escherichia coli strains. Biotechnol. Lett. 27: 119-125. https://doi.org/10.1007/s10529-004-7336-0
- Machielsen R, Leferink NG, Hendriks A, Brouns SJ, Hennemann HG, Daussmann T, et al. 2008. Laboratory evolution of Pyrococcus furiosus alcohol dehydrogenase to improve the production of (2S,5S)-hexanediol at moderate temperatures. Extremophiles 12: 587-594. https://doi.org/10.1007/s00792-008-0164-8
- Moore JC, Pollard DJ, Kosjek B, Devine PN. 2007. Advances in the enzymatic reduction of ketones. Acc. Chem. Res. 40: 1412-1419. https://doi.org/10.1021/ar700167a
- Nakamura K, Yamanaka R, Matsuda T, Harada T. 2003. Recent developments in asymmetric reduction of ketones with biocatalysts. Tetrahedron Asymmetry 14: 2659-2681. https://doi.org/10.1016/S0957-4166(03)00526-3
- Ni Y, Li CX, Wang LJ, Zhang J, Xu JH. 2011. Highly stereoselective reduction of prochiral ketones by a bacterial reductase coupled with cofactor regeneration. Org. Biomol. Chem. 9: 5463-5468. https://doi.org/10.1039/c1ob05285c
- Ni Y, Xu JH. 2012. Biocatalytic ketone reduction: a green and efficient access to enantiopure alcohols. Biotechnol. Adv. 30: 1279-1288. https://doi.org/10.1016/j.biotechadv.2011.10.007
- Park HJ, Jung J, Choi H, Uhm KN, Kim HK. 2010. Enantioselective bioconversion using Escherichia coli cells expressing Saccharomyces cerevisiae reductase and Bacillus subtilis glucose dehydrogenase. J. Microbiol. Biotechnol. 20: 1300-1306. https://doi.org/10.4014/jmb.1003.03025
- Richter N, Hummel W. 2011. Biochemical characterisation of a NADPH-dependent carbonyl reductase from Neurospora crassa reducing alpha- and beta-keto esters. Enzyme Microb. Technol. 48: 472-479. https://doi.org/10.1016/j.enzmictec.2011.02.004
- Stampfer W, Edegger K, Kosjek B, Faber K, Kroutil W. 2004. Simple biocatalytic access to enantiopure (S)-1-heteroarylethanols employing a microbial hydrogen transfer reaction. Adv. Synth. Catal. 346: 57-62. https://doi.org/10.1002/adsc.200303210
- Yoon SA, Jung J, Park S, Kim HK. 2013. Development of Saccharomyces cerevisiae reductase YOL151W mutants suitable for chiral alcohol synthesis using an NADH cofactor regeneration system. J. Microbiol. Biotechnol. 23: 218-224. https://doi.org/10.4014/jmb.1209.09059
- Zhang R, Xu Y, Sun Y, Zhang W, Xiao R. 2009. Ser67Asp and His68Asp substitutions in Candida parapsilosis carbonyl reductase alter the coenzyme specificity and enantioselectivity of ketone reduction. Appl. Environ. Microbiol. 75: 2176-2183. https://doi.org/10.1128/AEM.02519-08
- Zhu D, Hua L. 2010. How carbonyl reductases control stereoselectivity: approaching the goal of rational design. Pure Appl. Chem. 82: 117-128. https://doi.org/10.1351/PAC-CON-09-01-03
Cited by
- Effects of N-/C-Terminal Extra Tags on the Optimal Reaction Conditions, Activity, and Quaternary Structure of Bacillus thuringiensis Glucose 1-Dehydrogenase vol.26, pp.10, 2013, https://doi.org/10.4014/jmb.1603.03021
- Improved NADPH Regeneration for Fungal Cytochrome P450 Monooxygenase by Co-Expressing Bacterial Glucose Dehydrogenase in Resting-Cell Biotransformation of Recombinant Yeast vol.26, pp.12, 2016, https://doi.org/10.4014/jmb.1605.05090
- Mutagenesis of Key Residues in the Binding Center of l‐Aspartate‐β‐Semialdehyde Dehydrogenase from Escherichia coli Enhances Utilization of the Cofactor NAD(H) vol.17, pp.1, 2013, https://doi.org/10.1002/cbic.201500534
- Efficient biosynthesis of enantiopure tolvaptan by utilizing alcohol dehydrogenase-catalyzed enantioselective reduction vol.20, pp.6, 2013, https://doi.org/10.1039/c7gc03679e
- Genome mining, in silico validation and phase selection of a novel aldo-keto reductase from Candida glabrata for biotransformation vol.9, pp.1, 2018, https://doi.org/10.1080/21655979.2017.1342911