DOI QR코드

DOI QR Code

Pharmacokinetics and Bio-distribution of New Gd-complexes of DTPA-bis (amide) (L3) in a Rat Model

쥐를 이용한 새로운 가돌리늄 조영제 Gd-DTPA-bis(amide)(L3)의 약동학 및 생체내 분포 특성에 대한 연구

  • Yan, Gen (Department of Radiology, the Second Affiliated Hospital, Shantou University Medical College) ;
  • Wu, Renhua (Department of Radiology, the Second Affiliated Hospital, Shantou University Medical College) ;
  • Chang, Yongmin (Department of Radiology & Molecular Medicine, Kyungpook National University) ;
  • Kang, Duksik (Department of Radiology, Bogang Hospital)
  • ;
  • ;
  • 장용민 (경북대학교 의과대학 분자의학교실 및 경북대학교병원 영상의학과) ;
  • 강덕식 (대구 보강병원 영상의학과)
  • Received : 2013.10.30
  • Accepted : 2013.12.13
  • Published : 2013.12.27

Abstract

Purpose : To investigate the blood pharmacokinetics and bio-distribution of DTPA-bis-amide (L3) Gd(III) complexes. Materials and Methods: The pharmacokinetics and bio-distribution of Gd $(L3)(H_2O){\cdot}nH_2O$ were investigated in Sprague-Dawley rats after intravenous administration at a dose of 0.1 mmol Gd/kg. The Gd content in the blood, various tissues, and organs was determined by ICP-AES. Blood pharmacokinetic parameters were calculated using a two-compartment model. Results: The half-lives of ${\alpha}$ phase and ${\beta}$ phase Gd $(L3)(H_2O){\cdot}nH_2O$ were $2.286{\pm}0.11$ min and $146.1{\pm}7.5$ min, respectively. The bio-distribution properties reveal that the complex is mainly excreted by the renal pathway, and possibly excreted by the hepatobiliary route. The concentration ratio of Gd (III) was significantly higher in the liver and spleen than in other organs, and small amounts of Gd (III) ion were detected in the blood or other tissues of rats only after 7 days of intravenous administration. Conclusion: The MRI contrast agent Gd $(L3)(H_2O){\cdot}nH_2O$ provides prolonged blood pool retention in the circulation and then clears rapidly with minimal accumulation of Gd(III) ions. The synthesis of gadolinium complexes with well-balanced lipophilicity and hydrophilicity shows promise for their further development as blood pool MRI contrast agents.

목적: DTPA-bis-amide (L3) Gd(III) 복합체의 약동학 및 생체내 분포특성을 조사하고자 하였다. 대상과 방법: Sprague-Dawley 쥐의 꼬리정맥을 통하여 0.1 mmol Gd/kg의 DTPA-bis-amide (L3) Gd(III) 복합체를 주사한 후 약동학 및 생체내 분포 특성을 조사하였다. 조직 및 장기 그리고 혈중 Gd 농도를 ICP-AES를 사용하여 정량 측정하였으며 혈중 약동학적 파라미터는 two-compartment 모델을 사용하여 계산하였다. 결과: DTPA-bis-amide (L3) Gd(III) 복합체의 혈중 반감기는 ${\alpha}$-phase의 경우 $2.286{\pm}0.11$ min 그리고 ${\beta}$-phase의 경우 $146.1{\pm}7.5$ min 이었다. 생체내 분포특성은 주요 배설 경로는 신장을 통한 배설이 주요 경로였으며 일부 담도계를 통한 배설이 확인되었다. 또한 Gd(III)의 농도비는 다른 장기에 비해 간과 비장에서 매우 높은 농도를 보였으며 일부 Gd(III)이 정맥주사 후 7일후에 혈액 및 일부 장기에서 매우 소량 검출되었다. 결론: 새로운 조영제인 DTPA-bis-amide (L3) Gd(III) 복합체는 혈중 잔류시간이 상대적으로 길면서도 체내 축적없이 체외로 배출되는 특성을 나타내었다. 따라서 친지질성과 친수성의 균형이 잘 이루어진 가돌리늄 조영제의 합성은 향후 blood pool MRI 조영제로써의 가능성이 매우 높은 것으로 판단된다.

Keywords

References

  1. Mansfield P. Nmr imaging in biomedicine: Supplement 2 advances in magnetic resonance: Access Online via Elsevier, 1982
  2. Tzourio-Mazoyer N, Landeau B, Papathanassiou D, et al. Automated anatomical labeling of activations in spm using a macroscopic anatomical parcellation of the MRI single-subject brain. Neuroimage 2002;15:273-289 https://doi.org/10.1006/nimg.2001.0978
  3. Ostergaard L, Weisskoff RM, Chesler DA, Gyldensted C, Rosen BR. High resolution measurement of cerebral blood flow using intravascular tracer bolus passages. Part i: Mathematical approach and statistical analysis. Magn Reson Med 1996;36: 715-725 https://doi.org/10.1002/mrm.1910360510
  4. Tofts PS, Brix G, Buckley DL, et al. Estimating kinetic parameters from dynamic contrast-enhanced t1-weighted MRI of a diffusable tracer: standardized quantities and symbols. J Magn Reson Imaging 1999;10:223-232 https://doi.org/10.1002/(SICI)1522-2586(199909)10:3<223::AID-JMRI2>3.0.CO;2-S
  5. Caravan P, Ellison JJ, McMurry TJ, Lauffer RB. Gadolinium (iii) chelates as MRI contrast agents: structure, dynamics, and applications. Chemical Reviews 1999;99:2293-2352 https://doi.org/10.1021/cr980440x
  6. Jacques V, Desreux JF. New classes of MRI contrast agents. In Contrast agents i: Springer, 2002:123-164
  7. Aime S, Botta M, Terreno E. Gd (iii)-based contrast agents for MRI. Adv Inorg Chem 2005;57:173-237 https://doi.org/10.1016/S0898-8838(05)57004-1
  8. Tofts PS. Modeling tracer kinetics in dynamic Gd-DTPA MR imaging. J Magn Reson Imaging 1997;7:91-101 https://doi.org/10.1002/jmri.1880070113
  9. Hamm B, Staks T, Muhler A, et al. Phase i clinical evaluation of Gd-EOB-DTPA as a hepatobiliary MR contrast agent: Safety, pharmacokinetics, and MR imaging. Radiology 1995;195:785- 792 https://doi.org/10.1148/radiology.195.3.7754011
  10. Kobayashi H, Kawamoto S, Jo SK, Bryant HL, Brechbiel MW, Star RA. Macromolecular MRI contrast agents with small dendrimers: pharmacokinetic differences between sizes and cores. Bioconjugate Chem 2003;14:388-394 https://doi.org/10.1021/bc025633c
  11. Caravan P. Strategies for increasing the sensitivity of gadolinium based MRI contrast agents. Chem Soc Rev 2006;35:512- 523 https://doi.org/10.1039/b510982p
  12. Dutta S, Park JA, Jung JC, Chang Y, Kim TJ. Gd-complexes of DTPA-bis (amide) conjugates of tranexamic acid and its esters with high relaxivity and stability for magnetic resonance imaging. Dalton Trans 2008;28:2199-2206
  13. Gu S, Kim HK, Lee GH, Kang BS, Chang Y, Kim TJ. Gdcomplexes of 1, 4, 7, 10-tetraazacyclododecane-n, n′, n′′, n′′′-1, 4, 7, 10-tetraacetic acid (DOTA) conjugates of tranexamates as a new class of blood-pool magnetic resonance imaging contrast agents. J Med Chem 2010;54:143-152
  14. Wedeking P, Kumar K, Tweedle M. Dissociation of gadolinium chelates in mice: relationship to chemical characteristics. Magn Reson Imaging 1992;10:641-648 https://doi.org/10.1016/0730-725X(92)90016-S
  15. Parmelee DJ, Walovitch RC, Ouellet HS, Lauffer RB. Preclinical evaluation of the pharmacokinetics, biodistribution, and elimination of MS-325, a blood pool agent for magnetic resonance imaging. Invest Radiol 1997;32:741-747 https://doi.org/10.1097/00004424-199712000-00004
  16. Zech CJ, Vos B, Nordell A, Urich M, Blomqvist L, Breuer J. Vascular enhancement in early dynamic liver MR imaging in an animal model: comparison of two injection regimen and two different doses gd-eob-dtpa (gadoxetic acid) with standard gddtpa. Invest Radiol 2009;44:305-310 https://doi.org/10.1097/RLI.0b013e3181a24512
  17. Fasano M, Curry S, Terreno E, et al. The extraordinary ligand binding properties of human serum albumin. IUBMB life 2005;57:787-796 https://doi.org/10.1080/15216540500404093
  18. Samiotaki G, Vlachos F, Tung YS, Konofagou EE. A quantitative pressure and microbubble-size dependence study of focused ultrasound-induced blood-brain barrier opening reversibility in vivo using mri. Magn Reson Med 2012;67:769-777 https://doi.org/10.1002/mrm.23063
  19. Borlongan C, Emerich D. Facilitation of drug entry into the cns via transient permeation of blood brain barrier: laboratory and preliminary clinical evidence from bradykinin receptor agonist, cereport. Brain Res Bull 2003;60:297-306 https://doi.org/10.1016/S0361-9230(03)00043-1