DOI QR코드

DOI QR Code

Let-7c Inhibits NSCLC Cell Proliferation by Targeting HOXA1

  • Zhan, Min (Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University) ;
  • Qu, Qiang (Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University) ;
  • Wang, Guo (Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University) ;
  • Liu, Ying-Zi (Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University) ;
  • Tan, Sheng-Lan (Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University) ;
  • Lou, Xiao-Ya (Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University) ;
  • Yu, Jing (Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University) ;
  • Zhou, Hong-Hao (Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University)
  • Published : 2013.01.31

Abstract

Objective: The aim of the present study was to explore mechanisms by which let-7c suppresses NSCLC cell proliferation. Methods: The expression level of let-7c was quantified by qRT-PCR. A549 and H1299 cells were transfected with let-7c mimics to restore the expression of let-7c. The effects of let-7c were then assessed by cell proliferation, colony formation and cell cycle assay. Mouse experiments were used to confirm the effect of let-7c on tumorigenicity in vivo. Luciferase reporter assays and Western blotting were performed to identify target genes for let-7c. Results: HOXA1 was identified as a novel target of let-7c. MTS, colony formation and flow cytometry assays demonstrated that forced expression of let-7c inhibited NSCLC cell proliferation by inducing G1 arrest in vitro, consistent with inhibitory effects induced by knockdown of HOXA1. Mouse experiments demonstrated that let-7c expression suppressed tumorigenesis. Furthermore, we found that let-7c could regulate the expression of HOXA1 downstream effectors CCND1, CDC25A and CDK2. Conclusions: Collectively, these results demonstrate let-7c inhibits NSCLC cell proliferation and tumorigenesis by partial direct targeting of the HOXA1 pathway, which suggests that restoration of let-7c expression may thus offer a potential therapeutic intervention strategy for NSCLC.

Keywords

References

  1. Abe M, Hamada J, Takahashi O, et al (2006). Disordered expression of HOX genes in human non-small cell lung cancer. Oncol Rep, 15, 797-802.
  2. Aleem E, Kiyokawa H, Kaldis P (2005). Cdc2-cyclin E complexes regulate the G1/S phase transition. Nat Cell Biol, 7, 831-6. https://doi.org/10.1038/ncb1284
  3. Barh D, Malhotra R, Ravi B, et al (2010). MicroRNA let-7: an emerging next-generation cancer therapeutic. Curr Oncol, 17, 70-80.
  4. Bartel DP (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 116, 281-97. https://doi.org/10.1016/S0092-8674(04)00045-5
  5. Bitu CC, Destro MF, Carrera M, et al (2012). HOXA1 is overexpressed in oral squamous cell carcinomas and its expression is correlated with poor prognosis. BMC Cancer, 12, 146. https://doi.org/10.1186/1471-2407-12-146
  6. Chariot A, Castronovo V. (1996). Detection of HOXA1 expression in human breast cancer. Biochem Biophys Res Commun, 222, 292-7. https://doi.org/10.1006/bbrc.1996.0737
  7. Chen H, Sukumar S (2003). Role of homeobox genes in normal mammary gland development and breast tumorigenesis. J Mammary Gland Biol Neoplasia, 8, 159-75. https://doi.org/10.1023/A:1025996707117
  8. Cho HS, Toyokawa G, Daigo Y, et al (2012). The JmjC domain-containing histone demethylase KDM3A is a positive regulator of the G1/S transition in cancer cells via transcriptional regulation of the HOXA1 gene. Int J Cancer, 131, E179-89. https://doi.org/10.1002/ijc.26501
  9. Esquela-Kerscher A, Trang P, Wiggins JF, et al (2008). The let-7 microRNA reduces tumor growth in mouse models of lung cancer. Cell Cycle, 7, 759-64. https://doi.org/10.4161/cc.7.6.5834
  10. Feng X, Wu Z, Wu Y, et al (2011). Cdc25A regulates matrix metalloprotease 1 through Foxo1 and mediates metastasis of breast cancer cells. Mol Cell Biol, 31, 3457-71. https://doi.org/10.1128/MCB.05523-11
  11. Gong FX, Xia JL, Yang BW, et al (2011). Effect of let-7c on the proliferation of human hepatocellular carcinoma cell HCCLM3. Zhonghua Gan Zang Bing Za Zhi, 19, 853-6.
  12. Han HB, Gu J, Zuo HJ, et al (2012). Let-7c functions as a metastasis suppressor by targeting MMP11 and PBX3 in colorectal cancer. J Pathol, 226, 544-55. https://doi.org/10.1002/path.3014
  13. Jemal A, Siegel R, Ward E, et al (2007). Cancer statistics, 2007. CA Cancer J Clin, 57, 43-66. https://doi.org/10.3322/canjclin.57.1.43
  14. Jinno S, Suto K, Nagata A, et al (1994). Cdc25A is a novel phosphatase functioning early in the cell cycle. EMBO J, 13, 1549-56.
  15. Johnson CD, Esquela-Kerscher A, Stefani G, et al (2007). The let-7 microRNA represses cell proliferation pathways in human cells. Cancer Res, 67, 7713-22. https://doi.org/10.1158/0008-5472.CAN-07-1083
  16. Johnson SM, Grosshans H, Shingara J, et al (2005). RAS is regulated by the let-7 microRNA family. Cell, 120, 635-47. https://doi.org/10.1016/j.cell.2005.01.014
  17. Kim HH, Kuwano Y, Srikantan S, et al (2009). HuR recruits let-7/RISC to repress c-Myc expression. Genes Dev, 23, 1743-8. https://doi.org/10.1101/gad.1812509
  18. Kumar MS, Erkeland SJ, Pester RE, et al (2008). Suppression of non-small cell lung tumor development by the let-7 microRNA family. Proc Natl Acad Sci U S A, 105, 3903-8. https://doi.org/10.1073/pnas.0712321105
  19. Liu Q, Fu H, Sun F, et al (2008). miR-16 family induces cell cycle arrest by regulating multiple cell cycle genes. Nucleic Acids Res, 36, 5391-404. https://doi.org/10.1093/nar/gkn522
  20. Mayr C, Hemann MT, Bartel DP. (2007). Disrupting the pairing between let-7 and Hmga2 enhances oncogenic transformation. Science, 315, 1576-9. https://doi.org/10.1126/science.1137999
  21. Mohankumar KM, Xu XQ, Zhu T, et al (2007). HOXA1-stimulated oncogenicity is mediated by selective upregulation of components of the p44/42 MAP kinase pathway in human mammary carcinoma cells. Oncogene, 26, 3998-4008. https://doi.org/10.1038/sj.onc.1210180
  22. Nadiminty N, Tummala R, Lou W, et al (2012). MicroRNA let-7c is downregulated in prostate cancer and suppresses prostate cancer growth. PLoS One, 7, e32832. https://doi.org/10.1371/journal.pone.0032832
  23. Navarro A, Marrades RM, Vinolas N, et al (2009). MicroRNAs expressed during lung cancer development are expressed in human pseudoglandular lung embryogenesis. Oncology-Basel, 76, 162-9. https://doi.org/10.1159/000201569
  24. Ohuchida K, Mizumoto K, Lin C, et al (2012). MicroRNA-10a is overexpressed in human pancreatic cancer and involved in its invasiveness partially via suppression of the HOXA1 gene. Ann Surg Oncol, 19, 2394-402. https://doi.org/10.1245/s10434-012-2252-3
  25. Pasquinelli AE, Reinhart BJ, Slack F, et al (2000). Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature, 408, 86-9. https://doi.org/10.1038/35040556
  26. Pelosi A, Careccia S, Lulli V, et al (2012). miRNA let-7c promotes granulocytic differentiation in acute myeloid leukemia. Oncogene.
  27. Roush S, Slack FJ (2008). The let-7 family of microRNAs. Trends Cell Biol, 18, 505-16. https://doi.org/10.1016/j.tcb.2008.07.007
  28. Schultz J, Lorenz P, Gross G, et al (2008). MicroRNA let-7b targets important cell cycle molecules in malignant melanoma cells and interferes with anchorage-independent growth. Cell Res, 18, 549-57. https://doi.org/10.1038/cr.2008.45
  29. Shimizu S, Takehara T, Hikita H, et al (2010). The let-7 family of microRNAs inhibits Bcl-xL expression and potentiates sorafenib-induced apoptosis in human hepatocellular carcinoma. J Hepatol, 52, 698-704. https://doi.org/10.1016/j.jhep.2009.12.024
  30. Simoncini T, Hafezi-Moghadam A, Brazil DP, et al (2000). Interaction of oestrogen receptor with the regulatory subunit of phosphatidylinositol-3-OH kinase. Nature, 407, 538-41. https://doi.org/10.1038/35035131
  31. Suzuki R, Takemura K, Tsutsumi M, et al (2001). Detection of cyclin D1 overexpression by real-time reverse-transcriptase-mediated quantitative polymerase chain reaction for the diagnosis of mantle cell lymphoma. Am J Pathol, 159, 425-9. https://doi.org/10.1016/S0002-9440(10)61713-0
  32. Takamizawa J, Konishi H, Yanagisawa K, et al (2004). Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res, 64, 3753-6. https://doi.org/10.1158/0008-5472.CAN-04-0637
  33. Wang M, Wu L, Wang L, et al (2010). Down-regulation of Notch1 by gamma-secretase inhibition contributes to cell growth inhibition and apoptosis in ovarian cancer cells A2780. Biochem Biophys Res Commun, 393, 144-9. https://doi.org/10.1016/j.bbrc.2010.01.103
  34. Yamada H, Yanagisawa K, Tokumaru S, et al (2008). Detailed characterization of a homozygously deleted region corresponding to a candidate tumor suppressor locus at 21q11-21 in human lung cancer. Genes Chromosomes Cancer, 47, 810-8. https://doi.org/10.1002/gcc.20582
  35. Yin R, Bao W, Xing Y, et al (2012). MiR-19b-1 inhibits angiogenesis by blocking cell cycle progression of endothelial cells. Biochem Biophys Res Commun, 417, 771-6. https://doi.org/10.1016/j.bbrc.2011.12.032
  36. Zha TZ, Hu BS, Yu HF, et al (2012). Overexpression of HOXA1 correlates with poor prognosis in patients with hepatocellular carcinoma. Tumour Biol, 33, 2125-34. https://doi.org/10.1007/s13277-012-0472-6
  37. Zhu T, Starling-Emerald B, Zhang X, et al (2005). Oncogenic transformation of human mammary epithelial cells by autocrine human growth hormone. Cancer Res, 65, 317-24.

Cited by

  1. Expression profile of microRNAs in gastrointestinal stromal tumors revealed by high throughput quantitative RT-PCR microarray vol.21, pp.19, 2015, https://doi.org/10.3748/wjg.v21.i19.5843
  2. HOXA1 enhances the cell proliferation, invasion and metastasis of prostate cancer cells vol.34, pp.3, 2015, https://doi.org/10.3892/or.2015.4085
  3. JMJD1A promotes tumorigenesis and forms a feedback loop with EZH2/let-7c in NSCLC cells vol.37, pp.8, 2016, https://doi.org/10.1007/s13277-016-4999-9
  4. through retinoic acid response elements in acute myeloid leukemia vol.59, pp.1, 2018, https://doi.org/10.1080/10428194.2017.1324156