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Abstract

Construction projects have become increasingly complex in recent years, resulting in substantial safety hazards and

frequent fall accidents. In an attempt to prevent fall accidents, various safety management systems have been

developed. These systems have mainly been evaluated qualitatively and subjectively by practitioners or supervisors,

and there are few tools that can be used to quantitatively evaluate the performance of safety management systems. We

propose an expertise-based safety performance evaluation model (EXSPEM), which integrates a fuzzy approach-based

analytic hierarchy process and a regression approach. The proposed model uses S-shaped curves to represent the

degree of contribution by subjective expertise and is verified by a genetic algorithm. To illustrate its practical

application, EXSPEM was applied to evaluate the safety performance of a newly developed real-time mobile detector

monitoring system. It is expected that this model will be a helpful tool for systematically evaluating the application of

a robust safety control and management system in a complex construction environment.
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1. Introduction

The quantitative assessment of safety 

performance is likely to be unsuccessful because of 

the diverse features of construction activities 

involved in a project and the lack of consistently 

accumulated historical data. Furthermore, it is 

more likely for a safety performance evaluator to 

be biased against making numerical estimates 

because more mental effort is required to estimate 

numerical values than to offer verbal estimates or 

statements[1]. For this reason, there has been a 

great deal of interest in removing the biased 

subjectivity of experts and on achieving a 
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transformation to an objective means of evaluating 

the safety performance of new safety control 

technologies. 

An effective way to cope with such a challenge is 

to measure the degree of uncertainty in qualitative 

and subjective information. The magnitude of 

uncertainty can be estimated and measured using 

the fuzzy set theory[2] introduced in 1965 by 

Zadeh as a mathematical theory of vagueness[3]. 

This theory helps transform a linguistic model of a 

person’s subjective judgment into an algorithm that 

emphasizes the ability to extract information from 

massive amounts of imprecise data. The fuzzy set 

theory also makes it easier to explain qualitative 

and subjective judgments[4]. 

To secure the safety of workers at a 

construction site, Dėjus[5] has emphasized the 

simplicity and applicability of a method to reliably 

evaluate the technologies or systems applied to a 
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safety control program. Currently, there is a 

paucity of practical data and information to 

support a traditional tool for evaluating a newly 

developed safety management system. Furthermore, 

such a system is mainly evaluated by the 

qualitative and subjective judgments of 

practitioners, supervisors, engineers, or other 

individuals who are responsible for safety control 

and management during construction projects. 

To address these issues, this study introduced an 

expertise-based safety performance evaluation 

model (EXSPEM), which uses fuzzy modeling for 

the expertise-based aggregation of subjective 

information and to assist decision makers in the 

evaluation of a newly developed safety real-time 

monitoring system. The model was constructed by 

integrating a fuzzy approach-based analytic 

hierarchy process (AHP) and regression approach, 

and uses fuzzy modeling techniques for extracting 

experts’ knowledge on uncertain information. It 

also employed a fuzzy-weighted average method 

for aggregation of subjective expertise, assuming 

that the expert’s experience would affect safety 

performance evaluation. The model is expected to 

be one of tools that will help safety managers 

design more effective safety control plans and 

strategies by providing reliable evaluations of the 

applicability of newly developed technologies.

2. EXSPEM

2.1 Fuzzification of linguistic terms or fuzzy values

Fuzzy modeling has been widely applied in 

solving problems in which the descriptions of 

observations are too imprecise, vague, and 

uncertain to reach a reliable decision[6]. This 

modeling was developed specifically to deal with 

uncertainties that are not statistical in nature. 

Fuzzy operations allow the arithmetic combination 

of fuzzy numbers[7,8]. In evaluating a safety 

monitoring system, an evaluator’s judgments 

obtained through questionnaire surveys can be 

frequently used linguistic terms (words or idioms) 

or fuzzy values that are effectively represented by 

fuzzy numbers. In this study, the various linguistic 

and fuzzy values are referred to the standard 

performance scales of Hadipriono’s model[9], which 

consist of 11 linguistic values. 

2.2 Weights of safety performance evaluation criteria

EXSPEM uses an experience-based learning 

curve with a mathematical function to reflect the 

contribution of the subjectivities into a decision 

variable. This curve is helpful in evaluating the 

performance of a system with ambiguous 

subjectivities caused by the uncertainty and 

vagueness of the subjective perception in evaluation 

procedures[10]. The weights of criteria for 

evaluating safety performance are estimated from a 

fuzzy pairwise comparison matrix (Ᾱ) in the 

application of the fuzzy AHP. 
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, where rii = 1 and rij = 1/rji

In the above matrix, the n and rij parameters 

indicate the number of criteria to be evaluated and 

the relative importance of the ith criterion according 

to the jth criterion, respectively. Based on the 

modification of Chen’s definition[11], five linguistic 

terms, “very unimportant,” “less important,” 

“equally important,” “more important,” and “very 

important” ranging from 0 to 10 were used to 

develop the entries in such a matrix with a few 

fuzzy numbers, (0, 0, 1, 2), (1, 2.5, 4), (3, 5, 7), 

(6, 7.5, 9), and (8, 9, 10, 10), respectively. Of 

these linguistic variables, fuzzy numbers 

representing “very unimportant” and “very 
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Regression approach (Y(t) = β0 + β1´ t) GA-based computation

β0 β1 areg. breg. R2 SAD BFV aGA bGA

LF 1.853 -0.172 6.497 0.179 0.961 0.808 0.719 6.481 0.175

GF 0.879 -0.126 2.489 0.134 0.984 0.494 0.412 2.413 0.127

RGF -1.737 0.116 0.178 0.119 0.902 1.175 1.015 0.172 0.109

* Note: LF(logistic function); GF(gompertz function); RGF(reverse-gompertz function)

Table 1. Analysis of experience-based allocation of contribution

important” contain half-trapezoidal membership 

functions (MFs), and the others are characterized 

by symmetric triangular MFs. In this matrix, 

Buckley[12] proposed that an element of negative 

judgment be treated as an inverse, and he reversed 

the order of the fuzzy number for the 

corresponding positive judgment. For this reason, 

careful review is required to avoid errors that may 

arise from such tedious manipulations while 

constructing a reciprocal matrix.

2.3 Experience-based allocation of contribution by

subjective expertise

Levels of experience and expertise may differ, so 

a differentiated allocation curve of contribution by 

subjective expertise was developed using the 

mathematical functions derived from S-shaped 

growth curves. The curves reflect changes in the 

evaluator’s expertise with increased experience, and 

are represented by a mathematical equation 

describing the relationship between experience and 

the contribution of subjectivity to a decision problem. 

In this study, three types of S-shaped curves 

were used in the development of the 

experience-based allocation curve of contribution by 

subjective expertise. The gompertz function (GF) 

models a steep initial increase, and its increment 

rate decreases over the experience period. 

Conversely, the reverse-gompertz function (RGF) 

represents the opposite behavior. However, the 

logistic function (LF) describes a gradual increase 

and decrease in the learning rate with acquired 

expertise. The equations of these curves are 

presented below.

GF: y(t) = S´ exp[-a´ exp(-b´ t)] ----- (1)

LF: y(t) = S/[1+a´exp(-b´ t)] ------- (2)

RGF: y(t) = S´ [1-exp(-a´exp(-b´ t))] --- (3)

In the above curves, a is a shift parameter and 

a constant of integration that shifts the curve 

along the time axis, b represents the rate of 

increase in the level of expertise, and S is the 

upper asymptote indicating the highest degree of 

contribution. The values of these parameters were 

computed using the regression approach because 

the S-shaped curves are linearized by mathematical 

manipulations with the natural logarithms. 

Instantly, in the linearization of the LF, the terms 

ln(ln(y(t)), ln(-a), and -b are replaced with Y(t), 

β0, and β1, respectively, which are estimated as 

presented in Table 1.

The change in degree of contribution by 

subjective expertise over a period of time was 

surveyed using 24 practitioners with between 1 and 

30 years safety management and control experience 

as safety managers, field supervisors, and technical 

engineers. The averages of the collected data 

against the number of years of experience are 

plotted in Figure 1. After obtaining the fitted curve 

by the regression approach, a genetic algorithm 

(GA) was applied to verify the values of the 

parameters (a and b). A GA is widely known as a 

powerful tool for parameter optimization with a 

known fitness function[13,14]. 
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Figure 1. Contribution allocation curves and best fitness values

For application of the GA, the best fitness 

function (BFF) is derived from the sum of absolute 

difference (SAD) shown in Eq. [4] below, and 

determines the best fitness value (BFV). 
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In Eq. [4], t indicates an experience period, and 

ȳ(t) is the fitted contribution of expertise from t 

years of experience. Table 1 presents the parameter 

values, the R2 values resulting from the regression 

approach, and the BFVs derived from the GA-based 

computation. Even if the R2 of the GF was 0.98, 

which commonly explains appropriate fitness, the 

operation of the GA provided a more reliable fitted 

curve than the SAD computed by the regression 

approach. As shown in Table 1 and Figure 1, a 

contribution curve (GF) to allocate experience-based 

expertise was developed with the parameter values 

(aGA = 2.413 and bGA = 0.127) determined by the 

GA operation. This GF is used for aggregation of 

the subjective expertise in evaluating a newly 

developed safety monitoring system for preventing 

fall accidents.

2.4 Fuzzy aggregated values

The fuzzy numbers to be aggregated with the 

derived experience-based allocation curve of 

contribution were converted from linguistic values. 

An element value (rij) in the fuzzy pairwise 

comparison matrix (Ᾱ) can be concretized by a 

trapezoidal fuzzy number represented by (aij, bij, cij, 

dij), which can be aggregated with the allocated 

value of the contributions by n evaluators’ opinions 

in comparing each pair criteria, ranging between 0 

and 1. The aggregated element value (ȓ) can be 

calculated by the fuzzy multiplication and addition 

operators as shown in Eq. [5]. 

)e(r)e(r)e(rr n
n
ij2

2
ij1

1
ijij ´+´+´= Lˆ   ---- (5)

In Eq. [5], ek indicates the degree of reliability of 

the kth evaluator’s opinion, which is based on the 

allocated degree of contribution by experience, e1 + 

e2 + … + en = 1. The term rk
ij is a trapezoidal 

fuzzy number representing the opinion of the kth 

evaluator in comparing criterion i with j. Using Eq. 

[5], ȓ is represented by a trapezoidal number (aʹij, 
bʹij, c íj, d íj), which can be transformed into a 

triangular number (aʹij, b íj = c íj, d íj). Eq. [6] was 
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used to convert the aggregated fuzzy numbers into 

matching crisp values cij that can adequately 

represent the evaluators’ preference. 

6
d)cb2(a

c ijijijij
ij

¢+¢+¢+¢
= , cii = 1 and cij = 1/cji -(6)

Consequently, all the aggregated fuzzy scales, ȓij, 

were transferred into crisp scales within the range 

of [0, 10]. In calculating the weight of the criteria 

at each hierarchical level of the expected safety 

performance evaluation items, cij was used as the 

value representing a quantified judgment on 

criterion i compared with criterion j. For example, 

the weight of each criterion at level 1 can be 

calculated using three sub-criteria, as shown in 

Eq. [7]. 
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2.5 Computation of the performance index (PI)

The PI was computed in this study to explain the 

overall safety performance of the system. The fuzzy 

number used in evaluating each expected 

performance item was derived by converting the 

linguistic values obtained from several evaluators 

into the standard performance model. This number 

is represented by a triangular fuzzy number, 

Tri(aPS, bPS, cPS), in which three components are 

computed by multiplying the allocated value of the 

contribution by the subjective expertise (yiS) with t 

years of experience and the opinion (aiS) of the ith 

evaluator for the Sth expected performance item. In 

other words, they are produced using Eqs. [8], [9], 

and [10]. 
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Here, Tri(aiS, biS, ciS) indicates the triangular 

fuzzy number converted from the linguistic value of 

the ith evaluator. With this number, the MF of the 

PI is determined by the weight (wPS) of the Sth 

expected performance item, as described below. 
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In Eq. [11], af, bf, and cf were calculated using 

the principles of multiplication and addition of 

fuzzy numbers. Tri(af, bf, cf) can be converted into 

a real number output using Eq. [12], which was 

derived using the center of area (COA) method to 

determine the center of gravity of the area under 

the MF. The COA method is widely known as the 

most common defuzzification method[15]. In Eq. 

[12], xi is the output variable indicating the system 

performance score, and f(xi) represents the 

aggregated MF. 
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Figure 2. Configuration of a real-time safety monitoring system

Table 2. Expected safety performance items of the monitoring system
Categories Expected safety performance items

Direct improvement in safety
performance (C1)

P1: Precaution preparation

P2: Prompt response to a construction or site manager

P3: Mental and external reliability

Complement to insufficient
precautions (C2)

P4: Supplementation when there is insufficient training

P5: Continuous safety control and management

P6: Prevention of inappropriate worker movements

Elimination of causes of

latent hazards (C3)

P7: Reduction in accidents due to lack of understanding constr. process

P8: Eliminate unforeseen worker behavior through oppressive enforcement of safety policy

P9: Hazards due to lack of safety equipment

P10: Protection from unsafe construction methods or sequences

P11: Controlling hazardous site conditions

P12: Reduction in accidents resulting from not wearing safety equipment

P13: Improving worker attitudes regarding safety consciousness

P14: Prevention of accidents resulting from isolated, sudden deviation from prescribed behaviors

3. An illustrative application

3.1 A real-time safety monitoring system

In this study, EXSPEM was applied in a safety 

monitoring system[16] as an illustrative case to 

explain its practical use in a construction project. 

The newly developed equipment for construction 

safety consisted of three parts: a mobile sensing 

device with hybrid sensors; a radio frequency 

repeater, which was a wireless sensor network 

device, and safety management software. This 

system is also operated in sequential phases, such 

as acquiring data automatically, transmitting data, 

identifying the situation, and managing worker 

safety, as shown in Figure 2.

The safety performance evaluation items acquired 

by surveying 24 practitioners with sufficient safety 

management and control experience are categorized 

with 14 elements, as presented in Table 2. These 

categories were: 1) direct improvement in safety 
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performance, 2) complement of insufficient 

precautions, and 3) elimination of causes of latent 

hazards. A questionnaire survey was conducted to 

evaluate the safety performance of a newly 

developed technology aimed at preventing accidents, 

on the assumption that evaluators possess sufficient 

information regarding the application of the 

technology. 

3.2 Output explanation

After weighting the expected safety performance 

evaluation items using 24 practitioners, a 

questionnaire survey was conducted to evaluate an 

illustrative real-time safety monitoring system. 

Fifty-two qualified practitioners with job experience 

related to safety control and management in 

construction projects participated in the survey. 

Table 3 presents the experience and occupational 

areas of the survey participants.

Table 3. Experience and occupational areas of the survey

participants

Experience
(years)

Frequency
Occupational
areas

Percentage
(%)

1–3 8 Construction

(Site)
67

4–7 10
8–11 10 Construction

(Head office)
1512–15 8

16–19 5 Academic world 11
20–23 7
24–27 3

Others 728–30 1

A fitted experience-based allocation curve of 

contribution by subjective expertise related to fall 

accidents was derived from the regression approach 

and GA using Eq. [4]. The values of parameters a 

and b were determined as 2.413(aGA) and 

0.127(bGA), respectively. The BFV for optimizing 

this curve was computed by the GA and was 0.412. 

This value was very close to the SAD resulting 

from the regression approach, which was acceptable 

in this study. With a BFV of 0.412, the crossover 

and mutation parameters of the GA were set at 0.7 

and 0.01. Table 1 presents the fitted values of the 

parameters in the LF, GF, and RGF, and their 

SAD values were determined to be 0.808, 0.494, 

and 1.175, respectively. The GF was found to be 

the best-fitted function (ȳ(t)) reflecting the 

contribution of subjective opinions. In Figure 1, 

this fitted curve was compared with the average of 

the surveyed data. 

Categories Performance
Partial

weight

Final

weight

Direct improvement in

safety performance
(C1)

P1 0.126 0.019

P2 0.223 0.033
P3 0.651 0.096

Sub-sum 1 0.148

Complement to

insufficient precautions
(C2)

P4 0.124 0.035
P5 0.207 0.058
P6 0.670 0.187

Sub-sum 1 0.279

Elimination of causes
of latent hazards

(C3)

P7 0.038 0.022

P8 0.036 0.021
P9 0.049 0.028
P10 0.127 0.073
P11 0.110 0.063
P12 0.125 0.072
P13 0.233 0.134

P14 0.281 0.161
Sub-sum 1 0.573

Table 4. Weights of expected safety performance items

Table 4 shows the weights of the categorized and 

expected performance items, which were computed 

using Eqs. [5], [6], and [7]. The results indicated 

that the system had significant safety performance 

enhancements in the categories of “Prevention of 

inappropriate worker movements (P6),” “Improving 

worker attitude toward safety consciousness (P13),” 

and “Prevention of accidents due to isolated, sudden 

deviation from prescribed behaviors (P14).” The 

weights were 0.187, 0.134, and 0.161, respectively, 

constituting 48.2% of the entire weight. Six of the 

52 responses were rejected because of incomplete 

information, and the 46 valid responses were 

analyzed using EXSPEM. Each expected safety 

performance item was evaluated in linguistic terms, 

which were converted to fuzzy numbers using the 

standard performance values. The contribution by 
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subjective expertise was allocated and reflected in 

fuzzy operations, with the assumption that 

experience could bias subjectivity and degrade the 

reliability. 

The MF of the PI resulting in experience-based 

allocation of contribution (PIEAC) is derived from Eq. 

[8] and shown in Figure 3, and can be defuzzified 

using Eq. [9] to quantify the overall performance 

level as a crisp value. The PIEAC value was 

compared with the MF of the PI based on the 

uniform allocation of contribution (PIUAC), which 

was estimated regardless of the evaluators’ 

experience assuming that there was no information 

available regarding the contribution by subjective 

expertise. 

As shown in Table 5, the MF of the PIEAC 

consisted of three components, 5.89, 6.87, and 

7.86, and was converted to 6.92 in a real number 

output ranging from 0 to 10, indicating that the 

safety performance was evaluated to be between FG 

and G, closer to a “good performance” index. On 

the other hand, the MF of the PIUAC was 5.21, 

6.14, and 7.07, indicating that the safety 

performance evaluation under a uniformly assigned 

contribution to each evaluator was underestimated. 

This contradicts the assumption that the subjective 

expertise of an evaluator with substantial 

experience can affect the reliability of the safety 

performance evaluation.

Figure 3. MFs of PIEAC and PIUAC

Performance Index (PI)
With the

differentiated
expertise

Without the

differentiated
expertise

Aggregation

method
EAC UAC

Linguistic value
Close to “Good”
(G) performance

Close to “Fairly
Good” (FG)

performance

Fuzzy number,
Tri(af, bf, cf)

Tri(5.89, 6.87, 7.86) Tri(5.21, 6.14, 7.07)

Defuzzified value 6.92 6.17

Table 5. Comparison of PI values

To compare the MF of the PI based on the random 

allocation of contribution (PIRAC) with the PIECA, a 

degree of contribution was randomly generated in the 

range from 0 to 1, and the PIRAC value was 

calculated using the Monte Carlo technique. Figure 4 

shows the probability distribution of PIRAC over 3000 

random simulations. The mean was approximately 

6.22, close to the value of the PIUAC. Therefore, it 

could be stated that EXSPEM is appropriate for the 

safety performance evaluation of the system.
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Figure 4. Comparison of PIEAC, PIUAC, and PIRAC

4. Discussion

The use of EXSPEM will help evaluate the safety 

performance of technologies and systems developed 

to prevent fall accidents. To enhance its 

practicability, the model was reviewed by another 

respondent group consisting of 20 professional 
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practitioners who assessed the following important 

criteria in the aforementioned standard performance 

scores: mathematical logicality, applicability to 

other types of safety control systems, and 

practicability on a construction site. Each of these 

criteria was rated in a range between “good” and 

“very good.” The advantages of the EXSPEM 

introduced in this study are summarized as follows: 

(1) it is a simple and reliable method for evaluating 

the technologies or systems to reduce the 

possibility of fall accidents and facilitate preventive 

actions against environmental hazards that occur 

during construction; (2) it has the ability to 

allocate the contribution of evaluators’ knowledge 

into a work-related decision problem and to deal 

with the vagueness inherent in subjective 

judgments; (3) it introduces an expertise-based 

contribution function into the evaluation of 

performance in other types of technologies or 

systems, and provides indices for quantitatively 

assessing the performance, which assists the safety 

manager in establishing strategic and efficient 

safety control and management plans.

5. Conclusions

Various attempts have been made to quantify 

qualitative and subjective information in evaluating 

a performance-related decision variable. However, 

there are only a few widely accepted tools for 

evaluating the safety performance of a newly 

developed system based on subjective and 

qualitative information. This study proposed an 

approach to assist in quantifying subjectivities in 

experts’ opinions with an experience-based 

allocation curve of contribution. The outcomes 

showed that the experience-based allocation of 

contribution by subjective expertise was more 

practical than the uniform allocation of the 

contribution.

The overall performance index of an illustrative 

real-time safety monitoring system was computed 

to be 6.92 in the standardized performance scale, 

which was close to “Good” (G), in simple terms. 

The model is expected to be applied not only in 

evaluating the safety performance of other newly 

developed systems with limited information, but 

also in systemization of the quantitative evaluation 

of a construction-related safety system based on 

linguistic and subjective information. The safety 

performance of a newly developed technology or 

system might be evaluated more practically with a 

quantified indicator in the application of a 

mathematical contribution function. 
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