References
- Borradaile, N. M., Carroll, K. K. and Kurowska, E. M. (1999) Regulation of HepG2 cell apolipoprotein B metabolism by the citrus fruit flavanones hesperetin and naringenin. Lipids 34, 591-598. https://doi.org/10.1007/s11745-999-0403-7
- Cai, Y., Luo, Q., Sun, M. and Corke, H. (2004) Antioxidative activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer. Life Sci. 74, 2157-2184. https://doi.org/10.1016/j.lfs.2003.09.047
-
Chen, M. C., Wu, S. V., Reeve, J. R. and Rozengurt, E. (2006) Bitter stimuli induce
$Ca^{2+}$ signaling and CCK release in enteroendocrine STC-1 cells: role of L-type voltage-sensitive$Ca^{2+}$ channels. Am. J. Physiol. Cell Physiol. 291, C726-C739. https://doi.org/10.1152/ajpcell.00003.2006 - Day, A. J., Canada, F. J., Diaz, J. C. and Kroon, P. A., Mclauchlan, R. and Faulds C. B. (2000) Dietary flavonoid an isoflavone glycosides are hydrolysed by the lactase site of lactase phlorizin hydrolase. FEBS Lett. 468, 166-170. https://doi.org/10.1016/S0014-5793(00)01211-4
- Day, A. J., DuPont, M. S., Ridley, S., Rhodes, M. J. and Morgan, M. R. (1998) Deglycosylation of flavonoid and isoflavonoid glycosides by human small intestine and liver beta-glucosidase activity. FEBS Lett. 436, 71-75. https://doi.org/10.1016/S0014-5793(98)01101-6
- Fujiwara, S., Imada, T., Nakagita, T., okada, S., Nammokub, T., Abe, K. and Misaka, T. (2012) Sweeteners intcracting with the transmembrane domain of the human sweet-taste receptor induce sweet taste synergusms in bunary mixtures. Food Chem. 130, 561-568. https://doi.org/10.1016/j.foodchem.2011.07.073
- Garg, A., Garg, S., Zaneveld, L. J. and Singla, A. K. (2001) Chemistry and pharmacology of the citrus bioflavonoid hesperidin. Phytother. Res. 15, 655-669. https://doi.org/10.1002/ptr.1074
- Lee, S. H., Jeong, T. S., Park, Y. B., Kwon, Y. K., Choi, M. S. and Bok, S. H. (1999) Hypocholesterolemic effect of hesperetin mediated by inhibition of 3-hydroxy-3-methylglutaryl coenzyme A reductase and acyl coenzyme A: cholesterol acyltransferase in rats fed high-cholesterol diet. Nutr. Res. 19, 1245-1258. https://doi.org/10.1016/S0271-5317(99)00085-8
- Nakajima, S., Hira, T., Eto, Y., Asano, K. and Hara, H. (2010) Soybean b51-63 peptide stimulates cholecystokinin secretion via a calcium-senseing receptor in enteroendocrine STC-1 cells. Reg. Peptides 159, 148-155. https://doi.org/10.1016/j.regpep.2009.11.007
- Possemiers, S., Bolca, S., Verstraete, W. and Heyerick, A. (2011) The intestinal microbiome: A separate organ inside the body with the metabolic potential to influence the bioactivity of botanicals. Fitoterapia 82, 53-66. https://doi.org/10.1016/j.fitote.2010.07.012
- Purhonen, A. K., Louhivuori, L. M., Kiehne, K., Akerman, K. E. O. and Herzig, K. H. (2008) TRPA1 channel activation induces cholecystokinin release via extracellular calcium. FEBS Lett. 582, 229-232. https://doi.org/10.1016/j.febslet.2007.12.005
- Raybould, H. E. (2007) Mechanisms of CCK signaling from gut to brain. Curr. Opin. Pharmcol. 7, 570-574. https://doi.org/10.1016/j.coph.2007.09.006
- Sam, A. H., Troke, R. C., Tan, T. M. and Bewick, G. A. (2012) The role of the gut/brain axis in modulating food intake. Neuropharmacology 63, 46-56. https://doi.org/10.1016/j.neuropharm.2011.10.008
- Story, G. M., Peier, A. M., Reeve, A. J., Eid, S. R., Mosbadher, J., Hrick, T. R., Earley, T. J., Hergarden, A. C., Andersson, D. A., Hwang, S. W., McIntyre, P., Jegla, T., Bevan, S. and Patapoutian, A. (2003) ANKTM1, a TRP-like channel expressed in nociceptive neurons, is activated by cold temperatures. Cell 112, 819-829. https://doi.org/10.1016/S0092-8674(03)00158-2
- Walle, T. (2004) Absorption and metabolism of flavonoids. Free Radic. Biol. Med. 36, 829-837. https://doi.org/10.1016/j.freeradbiomed.2004.01.002
- Yoshida, H., Takamura, N., Shuto, T., Ogata, K., Tokunaga, J., Kawai, K. and Kai, H. (2010) The citrus flavonoids hesperetin and naringenin block the lipolytic actions of TNF-alpha in mouse adipocytes. Biochem. Biophys. Res. Commun. 394, 728-732. https://doi.org/10.1016/j.bbrc.2010.03.060
Cited by
- Molecular mechanism on functional food bioactives for anti-obesity vol.2, 2015, https://doi.org/10.1016/j.cofs.2014.11.008
- Citrus Flavonoids as Regulators of Lipoprotein Metabolism and Atherosclerosis vol.36, pp.1, 2016, https://doi.org/10.1146/annurev-nutr-071715-050718
- Biotransformed citrus extract as a source of anti-inflammatory polyphenols: Effects in macrophages and adipocytes vol.97, 2017, https://doi.org/10.1016/j.foodres.2017.03.034
- Citrus bioactive phenolics: Role in the obesity treatment vol.59, pp.2, 2014, https://doi.org/10.1016/j.lwt.2014.02.060
- Biotransformation effects on anti lipogenic activity of citrus extracts vol.197, 2016, https://doi.org/10.1016/j.foodchem.2015.11.109
- Analysis of interaction of phenolic compounds with the cholecystokinin signaling pathway to explain effects on reducing food intake vol.53, 2014, https://doi.org/10.1016/j.peptides.2014.02.006
- Aster pseudoglehni extract stimulates cholecystokinin and serotonin secretion in vitro and reduces gastric emptying in vivo vol.35, 2017, https://doi.org/10.1016/j.jff.2017.06.014
- Flavonoids stimulate cholecystokinin peptide secretion from the enteroendocrine STC-1 cells vol.113, 2016, https://doi.org/10.1016/j.fitote.2016.07.016
- In vitro evaluation of 13 Artemisia species for an ability to release cholecystokinin vol.23, pp.5, 2014, https://doi.org/10.1007/s10068-014-0233-y
- Naringenin stimulates cholecystokinin secretion in STC-1 cells vol.8, pp.2, 2014, https://doi.org/10.4162/nrp.2014.8.2.146
- GPR119 Agonist AS1269574 Activates TRPA1 Cation Channels to Stimulate GLP-1 Secretion vol.30, pp.6, 2013, https://doi.org/10.1210/me.2015-1306
- Hesperidin: A Therapeutic Agent For Obesity vol.13, pp.None, 2013, https://doi.org/10.2147/dddt.s227499
- Effect of food ingredients on glucagon‐like peptide‐1 secretion in STC‐1 and HuTu‐80 cells vol.54, pp.12, 2013, https://doi.org/10.1111/ijfs.14247
- Mammalian Transient Receptor Potential TRPA1 Channels: From Structure to Disease vol.100, pp.2, 2013, https://doi.org/10.1152/physrev.00005.2019
- Effects of Flavanols on Enteroendocrine Secretion vol.10, pp.6, 2013, https://doi.org/10.3390/biom10060844
- Hop bitter acids containing a β-carbonyl moiety prevent inflammation-induced cognitive decline via the vagus nerve and noradrenergic system vol.10, pp.1, 2013, https://doi.org/10.1038/s41598-020-77034-w
- Intersections in Neuropsychiatric and Metabolic Disorders: Possible Role of TRPA1 Channels vol.12, pp.None, 2013, https://doi.org/10.3389/fendo.2021.771575
- Going “Green” in the Prevention and Management of Atherothrombotic Diseases: The Role of Dietary Polyphenols vol.10, pp.7, 2013, https://doi.org/10.3390/jcm10071490
- Cinnamaldehyde Induces Release of Cholecystokinin and Glucagon-Like Peptide 1 by Interacting with Transient Receptor Potential Ankyrin 1 in a Porcine Ex-Vivo Intestinal Segment Model vol.11, pp.8, 2013, https://doi.org/10.3390/ani11082262
- TRPA1: Pharmacology, natural activators and role in obesity prevention vol.912, pp.None, 2013, https://doi.org/10.1016/j.ejphar.2021.174553
- Short‐chain fatty acids increase intracellular calcium levels and enhance gut hormone release from STC‐1 cells via transient receptor potential Ankyrin1 vol.35, pp.6, 2013, https://doi.org/10.1111/fcp.12663