DOI QR코드

DOI QR Code

Hesperetin Stimulates Cholecystokinin Secretion in Enteroendocrine STC-1 Cells

  • Kim, Hye Young (Metabolism and Nutrition Research Group, Division of Metabolism and Functionality Research, Korea Food Research Institute) ;
  • Park, Min (Metabolism and Nutrition Research Group, Division of Metabolism and Functionality Research, Korea Food Research Institute) ;
  • Kim, Kyong (Metabolism and Nutrition Research Group, Division of Metabolism and Functionality Research, Korea Food Research Institute) ;
  • Lee, Yu Mi (Metabolism and Nutrition Research Group, Division of Metabolism and Functionality Research, Korea Food Research Institute) ;
  • Rhyu, Mee Ra (Metabolism and Nutrition Research Group, Division of Metabolism and Functionality Research, Korea Food Research Institute)
  • Received : 2012.10.08
  • Accepted : 2013.01.22
  • Published : 2013.03.31

Abstract

Hesperetin (3',5,7-trihydroxy 4'-methoxyflavanone) and its glycoside hesperidin (hesperetin 7-rhamnoglucoside) in oranges have been reported to possess pharmacological effects related to anti-obesity. However, hesperetin and hesperidin have not been studied on suppressive effects on appetite. This study examined that hesperetin and hesperidin can stimulate the release of cholecystokinin (CCK), one of appetite-regulating hormones, from the enteroendocrine STC-1 cells, and then examined the mechanisms involved in the CCK release. Hesperetin significantly and dose-dependently stimulated CCK secretion with an $EC_{50}$ of 0.050 mM and increased the intracellular $Ca^{2+}$ concentrations ($[Ca^{2+}]_i$) compared to the untreated control. The stimulatory effect by hesperetin was mediated via the entry of extracellular $Ca^{2+}$ and the activation of TRP channels including TRPA1. These results suggest that hesperetin can be a candidate biomolecule for the suppression of appetite and eventually for the therapeutics of obesity.

Keywords

References

  1. Borradaile, N. M., Carroll, K. K. and Kurowska, E. M. (1999) Regulation of HepG2 cell apolipoprotein B metabolism by the citrus fruit flavanones hesperetin and naringenin. Lipids 34, 591-598. https://doi.org/10.1007/s11745-999-0403-7
  2. Cai, Y., Luo, Q., Sun, M. and Corke, H. (2004) Antioxidative activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer. Life Sci. 74, 2157-2184. https://doi.org/10.1016/j.lfs.2003.09.047
  3. Chen, M. C., Wu, S. V., Reeve, J. R. and Rozengurt, E. (2006) Bitter stimuli induce $Ca^{2+}$ signaling and CCK release in enteroendocrine STC-1 cells: role of L-type voltage-sensitive $Ca^{2+}$ channels. Am. J. Physiol. Cell Physiol. 291, C726-C739. https://doi.org/10.1152/ajpcell.00003.2006
  4. Day, A. J., Canada, F. J., Diaz, J. C. and Kroon, P. A., Mclauchlan, R. and Faulds C. B. (2000) Dietary flavonoid an isoflavone glycosides are hydrolysed by the lactase site of lactase phlorizin hydrolase. FEBS Lett. 468, 166-170. https://doi.org/10.1016/S0014-5793(00)01211-4
  5. Day, A. J., DuPont, M. S., Ridley, S., Rhodes, M. J. and Morgan, M. R. (1998) Deglycosylation of flavonoid and isoflavonoid glycosides by human small intestine and liver beta-glucosidase activity. FEBS Lett. 436, 71-75. https://doi.org/10.1016/S0014-5793(98)01101-6
  6. Fujiwara, S., Imada, T., Nakagita, T., okada, S., Nammokub, T., Abe, K. and Misaka, T. (2012) Sweeteners intcracting with the transmembrane domain of the human sweet-taste receptor induce sweet taste synergusms in bunary mixtures. Food Chem. 130, 561-568. https://doi.org/10.1016/j.foodchem.2011.07.073
  7. Garg, A., Garg, S., Zaneveld, L. J. and Singla, A. K. (2001) Chemistry and pharmacology of the citrus bioflavonoid hesperidin. Phytother. Res. 15, 655-669. https://doi.org/10.1002/ptr.1074
  8. Lee, S. H., Jeong, T. S., Park, Y. B., Kwon, Y. K., Choi, M. S. and Bok, S. H. (1999) Hypocholesterolemic effect of hesperetin mediated by inhibition of 3-hydroxy-3-methylglutaryl coenzyme A reductase and acyl coenzyme A: cholesterol acyltransferase in rats fed high-cholesterol diet. Nutr. Res. 19, 1245-1258. https://doi.org/10.1016/S0271-5317(99)00085-8
  9. Nakajima, S., Hira, T., Eto, Y., Asano, K. and Hara, H. (2010) Soybean b51-63 peptide stimulates cholecystokinin secretion via a calcium-senseing receptor in enteroendocrine STC-1 cells. Reg. Peptides 159, 148-155. https://doi.org/10.1016/j.regpep.2009.11.007
  10. Possemiers, S., Bolca, S., Verstraete, W. and Heyerick, A. (2011) The intestinal microbiome: A separate organ inside the body with the metabolic potential to influence the bioactivity of botanicals. Fitoterapia 82, 53-66. https://doi.org/10.1016/j.fitote.2010.07.012
  11. Purhonen, A. K., Louhivuori, L. M., Kiehne, K., Akerman, K. E. O. and Herzig, K. H. (2008) TRPA1 channel activation induces cholecystokinin release via extracellular calcium. FEBS Lett. 582, 229-232. https://doi.org/10.1016/j.febslet.2007.12.005
  12. Raybould, H. E. (2007) Mechanisms of CCK signaling from gut to brain. Curr. Opin. Pharmcol. 7, 570-574. https://doi.org/10.1016/j.coph.2007.09.006
  13. Sam, A. H., Troke, R. C., Tan, T. M. and Bewick, G. A. (2012) The role of the gut/brain axis in modulating food intake. Neuropharmacology 63, 46-56. https://doi.org/10.1016/j.neuropharm.2011.10.008
  14. Story, G. M., Peier, A. M., Reeve, A. J., Eid, S. R., Mosbadher, J., Hrick, T. R., Earley, T. J., Hergarden, A. C., Andersson, D. A., Hwang, S. W., McIntyre, P., Jegla, T., Bevan, S. and Patapoutian, A. (2003) ANKTM1, a TRP-like channel expressed in nociceptive neurons, is activated by cold temperatures. Cell 112, 819-829. https://doi.org/10.1016/S0092-8674(03)00158-2
  15. Walle, T. (2004) Absorption and metabolism of flavonoids. Free Radic. Biol. Med. 36, 829-837. https://doi.org/10.1016/j.freeradbiomed.2004.01.002
  16. Yoshida, H., Takamura, N., Shuto, T., Ogata, K., Tokunaga, J., Kawai, K. and Kai, H. (2010) The citrus flavonoids hesperetin and naringenin block the lipolytic actions of TNF-alpha in mouse adipocytes. Biochem. Biophys. Res. Commun. 394, 728-732. https://doi.org/10.1016/j.bbrc.2010.03.060

Cited by

  1. Molecular mechanism on functional food bioactives for anti-obesity vol.2, 2015, https://doi.org/10.1016/j.cofs.2014.11.008
  2. Citrus Flavonoids as Regulators of Lipoprotein Metabolism and Atherosclerosis vol.36, pp.1, 2016, https://doi.org/10.1146/annurev-nutr-071715-050718
  3. Biotransformed citrus extract as a source of anti-inflammatory polyphenols: Effects in macrophages and adipocytes vol.97, 2017, https://doi.org/10.1016/j.foodres.2017.03.034
  4. Citrus bioactive phenolics: Role in the obesity treatment vol.59, pp.2, 2014, https://doi.org/10.1016/j.lwt.2014.02.060
  5. Biotransformation effects on anti lipogenic activity of citrus extracts vol.197, 2016, https://doi.org/10.1016/j.foodchem.2015.11.109
  6. Analysis of interaction of phenolic compounds with the cholecystokinin signaling pathway to explain effects on reducing food intake vol.53, 2014, https://doi.org/10.1016/j.peptides.2014.02.006
  7. Aster pseudoglehni extract stimulates cholecystokinin and serotonin secretion in vitro and reduces gastric emptying in vivo vol.35, 2017, https://doi.org/10.1016/j.jff.2017.06.014
  8. Flavonoids stimulate cholecystokinin peptide secretion from the enteroendocrine STC-1 cells vol.113, 2016, https://doi.org/10.1016/j.fitote.2016.07.016
  9. In vitro evaluation of 13 Artemisia species for an ability to release cholecystokinin vol.23, pp.5, 2014, https://doi.org/10.1007/s10068-014-0233-y
  10. Naringenin stimulates cholecystokinin secretion in STC-1 cells vol.8, pp.2, 2014, https://doi.org/10.4162/nrp.2014.8.2.146
  11. GPR119 Agonist AS1269574 Activates TRPA1 Cation Channels to Stimulate GLP-1 Secretion vol.30, pp.6, 2013, https://doi.org/10.1210/me.2015-1306
  12. Hesperidin: A Therapeutic Agent For Obesity vol.13, pp.None, 2013, https://doi.org/10.2147/dddt.s227499
  13. Effect of food ingredients on glucagon‐like peptide‐1 secretion in STC‐1 and HuTu‐80 cells vol.54, pp.12, 2013, https://doi.org/10.1111/ijfs.14247
  14. Mammalian Transient Receptor Potential TRPA1 Channels: From Structure to Disease vol.100, pp.2, 2013, https://doi.org/10.1152/physrev.00005.2019
  15. Effects of Flavanols on Enteroendocrine Secretion vol.10, pp.6, 2013, https://doi.org/10.3390/biom10060844
  16. Hop bitter acids containing a β-carbonyl moiety prevent inflammation-induced cognitive decline via the vagus nerve and noradrenergic system vol.10, pp.1, 2013, https://doi.org/10.1038/s41598-020-77034-w
  17. Intersections in Neuropsychiatric and Metabolic Disorders: Possible Role of TRPA1 Channels vol.12, pp.None, 2013, https://doi.org/10.3389/fendo.2021.771575
  18. Going “Green” in the Prevention and Management of Atherothrombotic Diseases: The Role of Dietary Polyphenols vol.10, pp.7, 2013, https://doi.org/10.3390/jcm10071490
  19. Cinnamaldehyde Induces Release of Cholecystokinin and Glucagon-Like Peptide 1 by Interacting with Transient Receptor Potential Ankyrin 1 in a Porcine Ex-Vivo Intestinal Segment Model vol.11, pp.8, 2013, https://doi.org/10.3390/ani11082262
  20. TRPA1: Pharmacology, natural activators and role in obesity prevention vol.912, pp.None, 2013, https://doi.org/10.1016/j.ejphar.2021.174553
  21. Short‐chain fatty acids increase intracellular calcium levels and enhance gut hormone release from STC‐1 cells via transient receptor potential Ankyrin1 vol.35, pp.6, 2013, https://doi.org/10.1111/fcp.12663