DOI QR코드

DOI QR Code

파이로그린공정 희토류폐기물 유리화 타당성 연구

Feasibility Study on Vitrification for Rare Earth Wastes of PyroGreen Process

  • 김천우 (한국수력원자력(주) 중앙연구원) ;
  • 이병관 (한국수력원자력(주) 중앙연구원)
  • 투고 : 2012.10.24
  • 심사 : 2013.01.28
  • 발행 : 2013.03.30

초록

파이로그린공정의 염폐기물처리과정에서 발생되는 주요 산화물 형태의 폐기물에는 희토류폐기물이 있으며 주요 구성 핵종은 Y, La, Ce, Pr, Nd, Sm, Eu, Gd 등 8종이다. 최종적인 희토류폐기물의 형태는 산화물 형태로 발생된다. 본 연구에서는 붕규산 유리계 내에서 희토류 산화물의 유리화 타당성을 평가 하기 위하여 6종의 유리조성을 개발하였다. 희토류 8핵종 혼합에 대한 solubility는 $1,200^{\circ}C$에서 25wt% 미만, $1,300^{\circ}C$에서 30wt% 미만 waste loading으로 온도 상승에 따라 증가하는 것으로 나타났으며 liquidus temperature는 균질한 유리가 형성된 20wt% waste loading에서 $950^{\circ}C$ 이하로 평가되었다. 희토류 산화물의 유리매질 내 solubility 이상에서는 희토류-oxide-silicate 결정이 생성된 유리세라믹을 이차상으로 형성하였으며 20~25wt% waste loading의 표면균질성이 양호한 유리는 용융온도 $1,200{\sim}1,300^{\circ}C$ 범위에서 점도 100 poise 이하, 전기전도도 1 S/cm 이상으로 유도가열식 저온용융로설비에서의 운전 용이성이 매우 양호한 것으로 평가되었다. 개발된 유리조성에 대한 기타 물리 화학적 특성 평가를 위한 실험들이 향후 수행될 예정이다.

The rare earth oxide wastes consisting of major 8 nuclides Y, La, Ce, Pr, Nd, Sm, Eu and Gd, are generated during the salt waste treatment of PyroGreen process. The final form of the rare earth is generated as the oxide state. In this study, six candidate glasses were developed to evaluate the feasibility for vitrifying the rare earth oxide wastes within the borosilicate glass system. The solubilities of the mixture of the rare earth oxide waste showed less than 25wt% at $1,200^{\circ}C$, less than 30wt% at $1,300^{\circ}C$, respectively. It means that solubility is increased with the temperature increment. The liquidus temperature of the homogeneous glass with 20wt% waste loading was determined as less than $950^{\circ}C$. In more than solubility of rare earth oxides glass, formation of rare earth-oxide-silicate crystal in glass-ceramic occurred as the secondary phase. As their viscosity at melting temperature $1,200{\sim}1,300^{\circ}C$ was less than 100 poise, electrical conductivity was higher than 1 S/cm, 20~25wt% waste loading glasses with good surface homogeneity are judged to have good operability in cold crucible induction melter. Other physicochemical properties of the developed glasses are going to be experimented in the future.

키워드

참고문헌

  1. Tae-Gyo Lee, Yong-Jun Jo, Hee-Cheol Yang, Han-Su Lee and In-Tae Kim, "Recycling technology of eutectic salt waste generated in oxide spent fuel pyroprocessing", Proceedings of the Korean Radioactive Waste Society Conference, 7(2), pp. 169-170 (2009).
  2. In-Tae Kim, Yong-Jun Jo, Hee-Cheol Yang, Byeong- Gil An, Hwan-Seo Park, Hee-Cheol Eun and Han-Su Lee, "Removal and immobilization of rare earth nuclides from eutectic salt waste generated in PWR fuel pyroprocessing", Proceedings of the Korean Radioactive Waste Society Conference, 6(2), pp. 122-123 (2008).
  3. Tae-Kyo Lee, Yong-Jun Jo, In-Tae Kim and Han-Su Lee, "Salts recovery process and rare earth chlorides separation from eutectic salt waste generated in spent fuel pyroprocessing" Proceedings of the Korean Radioactive Waste Society Conference, 8(1), pp. 113-114 (2010).
  4. Yong-Jun Jo, Gil-Ho Park, Han-Su Lee and In-Tae Kim, "Oxidation/precipitation characteristics of rare earth nuclides within eutectic salt waste by using Labscale devices" Proceedings of the Korean Radioactive Waste Society Conference, 7(1), pp. 292-293 (2009).
  5. C.Lopez, X.Deschanels, J.M.Bart, J.M.Boubals, "Solubility of Actinide Surrogates in Nuclear Glasses", J. of Nuclear Materials, 312, pp. 76-80 (2003) https://doi.org/10.1016/S0022-3115(02)01549-0
  6. J. Campbell, C. L. Hoenig, F. Ryerson, M. Guiman, R. V. Konynenburg and R. Rozsa, "Properties of SYNROC- D nuclear wasteform: A-State-the-Art Review", UVRL-53240 (1982)
  7. F. Poitrasson, E. Olekers, J. Schott, and J. M. Montel, "Experimental determination of synthetic NdPO4 monazite end-member solubility in water from $21^{\circ}C$ to $300^{\circ}C$: Imbrications of rare earth element mobility in crustal fluids", Geochemica et Cosmochimica Acta, 40(10), pp. 2207-2221 (2004).
  8. Byung-Gil Ahn, Hwan-Seo Park, Hwan-Young Kim, Han-Soo Lee and In-Tae Kim, "Immobilization of Radioactive Rare Earth oxide Waste by Solid Phase Sintering", J. of the Korean Radioactive Waste Society, 8(1), pp.49-56 (2010).
  9. K. Vinjamuri, S. T. Wood, L. O. Nelson, GLASSFORMVersion 1.1 : An Algorithm for Generating Preliminary Glass Formulations for Waste Streams, INEEL/EXT- 98-00269 (2000).

피인용 문헌

  1. Vitusite glass-ceramics wasteforms for immobilization of lanthanide wastes generated by pyro-processing vol.41, pp.4, 2015, https://doi.org/10.1016/j.ceramint.2015.01.035
  2. Calcium-borosilicate glass-ceramics wasteforms to immobilize rare-earth oxide wastes from pyro-processing vol.467, 2015, https://doi.org/10.1016/j.jnucmat.2015.09.040
  3. Liquidus temperature and chemical durability of selected glasses to immobilize rare earth oxides waste vol.465, 2015, https://doi.org/10.1016/j.jnucmat.2015.06.050
  4. Component effects on crystallization of RE-containing aluminoborosilicate glass vol.478, 2016, https://doi.org/10.1016/j.jnucmat.2016.06.018
  5. Development, characterization and dissolution behavior of calcium-aluminoborate glass wasteforms to immobilize rare-earth oxides vol.8, pp.1, 2018, https://doi.org/10.1038/s41598-018-23665-z
  6. An Assessment of Initial Leaching Characteristics of Alkali-Borosilicate Glasses for Nuclear Waste Immobilization vol.12, pp.9, 2019, https://doi.org/10.3390/ma12091462
  7. Effect of glass composition on the crystallization of CePO4-borosilicate glass composite materials vol.98, pp.11, 2020, https://doi.org/10.1139/cjc-2020-0234
  8. Investigating the Leaching Rate of TiTe3O8 Towards a Potential Ceramic Solid Waste Form vol.18, pp.4, 2013, https://doi.org/10.7733/jnfcwt.2020.18.4.509