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BOUNDED WEAK SOLUTION FOR THE

HAMILTONIAN SYSTEM

Q-Heung Choi and Tacksun Jung∗

Abstract. We investigate the bounded weak solutions for the Hamil-
tonian system with bounded nonlinearity decaying at the origin and
periodic condition. We get a theorem which shows the existence of
the bounded weak periodic solution for this system. We obtain this
result by using variational method, critical point theory for indefinite
functional.

1. introduction

LetG(t, z(t)) be a C2 function defined onR1×R2n which is 2π−periodic
with respect to the first variable t. In this paper we investigate the num-
ber of 2π-periodic solutions of the following Hamiltonian system

˙p(t) = −Gq(t, p(t), q(t)),(1.1)

˙q(t) = Gp(t, p(t), q(t)),

where p, q ∈ Rn, z = (p, q). Let J be the standard symplectic
structure on R2n, i. e.,

J =

(
0 −In
In 0

)
,
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where In is the n× n identity matrix. Then (1.1) can be rewritten as

(1.2) −Jż = Gz(t, z(t)),

where ż = dz
dt

and Gz is the gradient of G. We assume that G ∈
C2(R1 ×R2n, R1) satisfies the following conditions:
(G1) G ∈ C2(R1 ×R2n, R1),
(G2) G(t, z(t)) = O(|z|2) as |z| → 0, G(t, θ) = 0, Gz(t, θ) = θ, where
θ = (0, · · · , 0),
(G3) there exists C > 0 such that |G(t, ξ)| < C ∀t ∈ R, ξ ∈ R3.
Several authors ([1], [3], [4], [5] etc.) studied the nonlinear hamiltonian
system. Jung and Choi ([3], [4]) considered (1.1) with nonsingular poten-
tial nonlinearity or jumping nonlinearity crossing one eigenvalue, or two
eigenvalues, or several eigenvalues. Chang ([1]) proved that (1.1) has at
least two nontrivial 2π−periodic weak solutions under some asymptotic
nonlinearity. Jung and Choi ([3]) proved that (1.1) has at least m weak
solutions, which are geometrically distinct and nonconstant under some
jumping nonlinearity.

We are looking for the weak solutions of (1.1) with the conditions
(G1)-(G3). The 2π-periodic weak solution z = (p, q) ∈ E of (1.1) satis-
fies ∫ 2π

0

(ż − JGz(t, z(t))) · Jwdt = 0 for all w ∈ E,

i. e.,

∫ 2π

0

[(ṗ+Gq(t, z(t))) · ψ − (q̇ −Gp(t, z(t))) · ϕ]dt = 0

for all ζ = (ϕ, ψ) ∈ E,

where E is introduced in section 2.
Our main result is as follows:

Theorem 1.1. Assume that G satisfies the conditions (G1) − (G3).
Then system (1.1) has at least one bounded 2π-periodic solution.

For the proof of our main result we approach the variational method
and apply the critical point theory to indefinite functional. The outline
of the proof of Theorem 1.1 is as follows: In Section 2, we introduce
the perturbed operator Aϵ such that A−1

ϵ is a compact operator, and the
associated functional I(z) corresponding to the operator Aϵ, prove that
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I(z) satisfies Fréchet differentiability, and state the critical point theo-
rem for indefinite functional. In section 3, we show that the associated
functional I(z) satisfies the geometrical assumptions of the critical point
theorem for indefinite functional, and prove Theorem 1.1.

2. Compact operator and variational approach

Let L2([0, 2π], R2n) denote the set of 2n-tuples of the square integrable
2π−periodic functions and choose z ∈ L2([0, 2π], R2n). Then it has a

Fourier expansion z(t) =
∑k=+∞

k=−∞ ake
ikt, with ak = 1

2π

∫ 2π

0
z(t)e−iktdt ∈

C2n, a−k = āk and
∑

k∈Z |ak|2 <∞. Let

A : z(t) 7→ −Jż(t)
with domain

D(A) = {z(t) ∈ H1([0, 2π], R2n)| z(0) = z(2π)}
= {z(t) ∈ L2([0, 2π], R2n)|

∑
k∈Z

(ϵ+ |k|)2|ak|2 < +∞},

where ϵ is a positive small number. Then A is a self-adjoint operator.
Let {Mλ} be the spectral resolution of A, and let α be a positive number
such that α /∈ σ(A) and [−α, α] contains only one element 0 of σ(A).
Let

P0 =

∫ α

−α

dMλ, P+ =

∫ +∞

α

dMλ, P− =

∫ −α

−∞
dMλ.

Let

L0 = P0L
2([0, 2π], R2n),

L+ = P+L
2([0, 2π], R2n),

L− = P−L
2([0, 2π], R2n).

For each u ∈ L2([0, 2π], R2n), we have the decomposition

u = u0 + u+ + u−,

where u0 ∈ L0, u+ ∈ L+, u− ∈ L−. According to A, there exists a small
number ϵ > 0 such that −ϵ /∈ σ(A). Let us define the space E as follows:

E = D(|A|
1
2 ) = {z ∈ L2([0, 2π], R2n)|

∑
k∈Z

(ϵ+ |k|)|ak|2 <∞}
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with the scalar product

(z, w)E = ϵ(z, w)L2 + (|A|
1
2 z, |A|

1
2w)L2

and the norm

∥z∥ = (z, z)
1
2
E = (

∑
k∈Z

(ϵ+ |k|)|ak|2)
1
2 .

The space E endowed with this norm is a real Hilbert space continuously
embedded in L2([0, 2π], R2n). The scalar product in L2 naturally extends

as the duality pairing between E and E ′ = W− 1
2
,2([0, 2π], R2n). We

note that the operator (ϵ + |A|)−1 is a compact linear operator from
L2([0, 2π], R2n) to E such that

((ϵ+ |A|)−1w, z)E =

∫ 2π

0

(w(t), z(t))dt.

Let

Aϵ = ϵI + A.

Let

E0 = |Aϵ|−
1
2L0, E+ = |Aϵ|−

1
2L+, E− = |Aϵ|−

1
2L−.

Then E = E0 ⊕ E+ ⊕ E− and for z ∈ E, z has the decomposition
z = z0 + z+ + z− ∈ E, where

z0 = |Aϵ|−
1
2u0, z+ = |Aϵ|−

1
2u+, z− = |Aϵ|−

1
2u−.

Thus we have

∥z0∥E0 = ∥u0∥L0 , ∥z+∥E+ = ∥u+∥L+ , ∥z−∥E− = ∥u−∥L−

and that E0, E+, E− are isomorphic to L0, L+, L−, respectively. The
associated functional of (1.2) on E is as follows:

I(z) =
1

2
(∥A

1
2
ϵ z+∥2L2 + ∥A

1
2
ϵ M+z0∥2 − ∥(−Aϵ)

1
2 z−∥2L2(2.1)

−∥(−Aϵ)
1
2M−z0∥2)− ψϵ(z),

=
1

2
(∥u+∥2 + ∥M+u0∥2 − ∥M−u0∥2 − ∥u−∥2)− ψϵ(z),

where ψϵ(z) = ψ(z) + ϵ
2
∥z∥2L2 , ψ(z) =

∫ 2π

0
G(t, z(t))dt. Let

F (z) = Gz(t, z(t)).
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By G ∈ C2 , ψ(z) =
∫ 2π

0
G(t, z(t))dt ∈ C2(S1 ×D,R1). Let

Fϵ(z) = ϵI + F (z) = ϵI +Gz(t, z(t)).

Then (1.2) can be rewritten as

(2.2) Aϵ(z) = Fϵ(z).

The Euler equation of the functional I(z) is the system

(2.3) u+ = |Aϵ|−
1
2P+Fϵ(z),

(2.4) u− = −|Aϵ|−
1
2P−Fϵ(z),

M+u0 = |Aϵ|−
1
2M+P0Fϵ(z)

M−u0 = −|Aϵ|−
1
2M−P0Fϵ(z).(2.5)

Thus z = z0+z++z− is a solution of (2.2) if and only if u = u0+u++u−
is a critical point of I. The system (2.3)-(2.5) is reduced to

(2.6) Aϵz+ = P+Fϵ(z0+z++z−) or z+ = (Aϵ)
−1P+Fϵ(z0+z++z−),

(2.7) Aϵz− = P−Fϵ(z0+z++z−) or z− = (Aϵ)
−1P−Fϵ(z0+z++z−),

AϵM+z0 = M+P0Fϵ(z0 + z+ + z−),(2.8)

AϵM−z0 = M−P0Fϵ(z0 + z+ + z−).

By the following Lemma 2.1, the weak solutions of (1.2) coincide with
the critical points of the functional I(z).

Lemma 2.1. Assume that G satisfies the conditions (G1) − (G3).
Then I(z) is continuous and Fréchet differentiable in E with Fréchet
derivative

(2.9) DI(z)w =

∫ 2π

0

(Aϵz − Fϵ(z)) · wdt for all w ∈ E,

Moreover DI ∈ C. That is, I ∈ C1.
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Proof. First we prove that I(z) =
∫ 2π

0
[1
2
Aϵz − G(t, z(t)) − ϵ

2
z2]dt is

continuous and Fréchet differentiable in E. For z, w ∈ E,

|I(z + w)− I(z)|

= |
∫ 2π

0

1

2
Aϵ(z + w) · (z + w)dt−

∫ 2π

0

[G(t, z + w) +
ϵ

2
(z + w)2]dt

−
∫ 2π

0

1

2
Aϵ(z) · zdt+

∫ 2π

0

[G(t, z) +
ϵ

2
z2]dt

= |
∫ 2π

0

1

2
[Aϵ(z) · w + Aϵ(w) · z + Aϵ(w) · w]dt

−
∫ 2π

0

[G(t, z + w)−G(t, z) +
ϵ

2
(2z · w + w2))]dt|.

We have

|
∫ 2π

0

[G(t, z + w)−G(t, z)]dt|(2.10)

≤ |
∫ 2π

0

[Gz(t, z(t)) · w +O(∥w∥R2n)]dt| = O(∥w∥R2n).

Thus we have
|I(z + w)− I(z)| = O(∥w∥R2n).

Next we shall prove that I(z) is Fréchet differentiable in E. For z, w ∈
E,

|I(z + w)− I(z)−DI(z)w|

= |
∫ 2π

0

1

2
Aϵ(z + w) · (z + w)dt−

∫ 2π

0

[G(t, z + w) +
ϵ

2
(z + w)2]dt

−
∫ 2π

0

1

2
Aϵ(z) · zdt+

∫ 2π

0

[G(t, z) +
ϵ

2
z2]dt

−
∫ 2π

0

Aϵ(z) · wdt+
∫ 2π

0

[Gz(t, z) + ϵz · w]dt

= |
∫ 2π

0

1

2
[Aϵ(w) · zdt+ Aϵ(w) · w]dt

−
∫ 2π

0

[G(t, z + w)−G(t, z)−Gz(t, z) +
ϵ

2
w2)]dt|.
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By (2.10), we have∫ 2π

0

[G(t, z + w)−G(t, z)−Gz(t, z)]dt = O(∥w∥R2n).

Thus

|I(z + w)− I(z)−DI(z)w| = O(∥w∥R2n).

Now, we recall the critical point theorem for the indefinite functional
(cf. [2]).

Let

Br = {u ∈ E| ∥u∥ ≤ r},

∂Br = {u ∈ E| ∥u∥ = r}.

Theorem 2.1. Critical point theorem for the indefinite functional)
Let E be a real Hilbert space with E = E1 ⊕E2 and E2 = E⊥

1 . Suppose
that I ∈ C1(E,R), satisfies (PS), and
(I1) I(u) = 1

2
(Lu, u) + bu, where Lu = L1P1u+L2P2u and Li : Ei → Ei

is bounded and self adjoint, i = 1, 2,
(I2) b′ is compact, and
(I3) there exists a subspace Ẽ ⊂ E and sets S ⊂ E, Q ⊂ Ẽ and constants
α > ω such that
(i) S ⊂ E1 and I|S ≥ α,
(ii) Q is bounded and I|∂Q ≤ ω,
(iii) S and ∂Q link.
Then I possesses a critical value c ≥ α.

3. Proof of Theorem 1.1

We shall show that the functional I(z) satisfies the geometric assump-
tions of the critical point theorem for indefinite functional.

Lemma 3.1. Palais-Smale condition) Assume that G satisfies (G1)−
(G3). Then I(z) satisfies the Palais-Smale condition: If for a sequence
(zk), I(zk) is bounded from above and DI(zk) → 0 as k → ∞, then (zk)
has a convergent subsequence.
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Proof. Let (zk) be a sequence with

(3.1) I(zk) ≤M

and

(3.2) DI(zk) = zk − A−1
ϵ (Gz(t, zk) + ϵzk) → θ as m→ ∞,

where A−1
ϵ is compact operator and θ = (0, · · · , 0). We claim that {zk}

has a convergent subsequence. Since Gz(t, z(t)) + ϵzk is bounded for
a small constant ϵ and A−1

ϵ is compact operator, by (3.2), {zk} has a
convergent subsequence. Thus we prove the lemma.

Let

Bρ = {z ∈ E| ∥z∥ ≤ ρ},

∂Bρ = {z ∈ E| ∥z∥ = ρ},

Q = (B̄R ∩ E−)⊕ {re| e ∈ ∂B1 ∩ E+ 0 < r < R}.

Lemma 3.2. Assume that G satisfies the conditions (G1) − (G3).
there exist a constant ρ > 0 and sets S ⊂ E, Q ⊂ E such that
(i) ∂Bρ ⊂ E+ and I|∂Bρ > 0,
(ii) Q is bounded and I|∂Q < 0,
(iii) ∂Bρ and ∂Q link.

Proof. (i) Let z ∈ E+ ⊂ E. Since G(x, t, z) is bounded, there exists a
constant C > 0 such that

I(z) =
1

2
(∥A

1
2
ϵ z+∥2L2 + ∥A

1
2
ϵ M+z0∥ − ∥(−Aϵ)

1
2 z−∥2L2 − ∥(−Aϵ)

1
2M−z0∥2)

−
∫ 2π

0

G(t, z)dt− ϵ

2
∥z∥2L2

≥ 1

2
(∥A

1
2
ϵ z+∥2L2 − C − ϵ

2
∥z∥2L2

for C > 0. Then there exist a constant ρ > 0 such that if z ∈ ∂Bρ ∩E+,
then I(z) > 0.
(ii) Let us choose e ∈ B1 ∩ E+. Let z ∈ B̄r ∩ E− ⊕ {re| 0 < r}. Then
z = w + y, w ∈ B̄r ∩ E−, y = re. We note that

If w ∈ B̄r ∩ E−, then

∫ 2π

0

Aϵ(z) · zdt = −∥(−Aϵ)
1
2 z−∥2L2 ≤ 0.
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By (G3), G(t, w + re) is bounded from below. Thus, there exists a
constant C1 > 0 such that if z = w + re, then we have

I(z) =
1

2
r2 − ∥(−Aϵ)

1
2 z−∥2L2 −

∫ 2π

0

G(t, w + re)dt− ϵ

2
∥z∥2L2

≤ 1

2
r2 − ∥(−Aϵ)

1
2 z−∥2L2 + C1 −

ϵ

2
∥z∥2L2 .

We can choose a constant R > r such that if z = w + re ∈ Q =
(B̄r ∩ E−) ⊕ {re| e ∈ B1 ∩ E+, 0 < r < R}, then I(z) < 0. Thus we
prove the lemma.

Proof of Theorem 1.1

By Lemma 2.1, I(z) is continuous and Fréchet differentiable in E and
moreover DI ∈ C. By Lemma 3.1, I(z) satisfies the (P.S.) condition.
By Lemma 3.2, there exist a constant ρ > 0 and sets ∂Bρ ⊂ E+ with
radius ρ > 0, Q ⊂ E such that I|∂Bρ > 0, Q is bounded and I|∂Q < 0,
and ∂Bρ and ∂Q link. By Theorem 2.1, I(z) possesses a critical value
c > 0. Thus (1.1) has at least one nontrivial periodic weak solution.
Thus we prove Theorem 1.1
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