References
- S. C. Arora, J.K. Thukral, On a class of operators, Glas. Mat. Ser. III 21 (1986), 381-386.
- S. K. Berberian Approximate proper vectors, Proc. Amer. Math. Soc. 13(1962), 111-114. https://doi.org/10.1090/S0002-9939-1962-0133690-8
- S. V. Djordjevic and B. P. Duggal, Weyl's theorem and continuity of spectra in the class of p-hyponormal operators, Studia Math. 143(2000), 23-32.
- S. V. Djordjevic and Y. M. Han, Browder's theorem and spectral continuity, Glasg. Math. J. 42(2000), 479-486. https://doi.org/10.1017/S0017089500030147
- S. V. Djordjevic, Continuity of the essential spectrum in the class of quasihy-ponormal operators, Math. Vesnik 50(1998), 71-74.
- B. P. Duggal, I. H. Jeon, and I. H. Kim, Continuity of the spectrum on a class of upper triangular operator matrices, J. Math. Anal. Appl. 370 (2010), 584-587. https://doi.org/10.1016/j.jmaa.2010.04.068
- B. P. Duggal, I. H. Jeon, and I. H. Kim, On *-paranormal contractions and properties for *-class A operators, Linear Algebra Appl. 436(2012), 954-962. https://doi.org/10.1016/j.laa.2011.06.002
- P. B. Halmos, A Hilbert Space Problem Book, Van Nostrand, Princeton 1967.
- I. S. Hwang and W. Y. Lee, The spectrum is continuous on the set of p-hyponormal operators, Math. Z. 235(2000), 151-157. https://doi.org/10.1007/s002090000128
- J. D. Newburgh, The variation of spectra, Duke Math. J. 18(1951), 165-176. https://doi.org/10.1215/S0012-7094-51-01813-3
Cited by
- ON THE SPECTRAL CONTINUITY vol.23, pp.1, 2013, https://doi.org/10.11568/kjm.2015.23.1.65