DOI QR코드

DOI QR Code

랜덤 코돈 원형 부호 기반의 DNA 워터마킹

DNA Watermarking Method based on Random Codon Circular Code

  • 이석환 (동명대학교 정보보호학과) ;
  • 권성근 (경일대학교 전자공학과) ;
  • 권기룡 (부경대학교 IT융합응용공학과)
  • 투고 : 2012.10.22
  • 심사 : 2013.01.26
  • 발행 : 2013.03.31

초록

본 논문에서는 DNA 시퀀스의 불법 복제 및 변이 방지를 위한 DNA 워터마킹 기법을 제안한다. 제안한 DNA 워터마킹은 랜덤 맵핑 테이블에 의하여 코돈들을 랜덤 원형 각도로 수치화한 다음, 웨이블릿 국부계수 최대치의 Lipscihtz regularity 상수에 의하여 삽입 대상 코돈들을 탐색한다. 워터마크 삽입과정에서 DNA의 아미노산 코드가 변경되지 않도록 하기위하여 삼중 코돈들의 랜덤 코돈 원형 각도에 워크마크를 삽입한다. 삽입 대상 코돈들의 길이와 위치는 랜덤 맵핑 테이블에 의존하므로, 이 테이블을 알지 못할 경우, 워터마크 추출이 어렵다. 그리고 제안한 방법은 다양한 길이의 DNA 서열에 64개 코돈(종료, 개시 코돈포함)들의 랜덤 맵핑 테이블을 적용함으로써 동일한 길이의 워터마크 키를 적용한다. 본 실험에서는 랜덤 맵핑 테이블과 삽입 위치의 높은 엔트로피를 통하여 워터마크의 보안성을 확인하였다. 또한 기존의 DNA-Crypt 워터마킹과의 유사한 용량 하에서 제안한 방법이 낮은 염기 변화율을 가지며, 포인트 변이, 삽입 및 삭제 변이에 대하여 낮은 에러률를 가지며, ROC 분석을 통하여 우수한 검출 능력을 가짐을 확인하였다.

This paper proposes a DNA watermarking method for the privacy protection and the prevention of illegal copy. The proposed method allocates codons to random circular angles by using random mapping table and selects triplet codons for embedding target with the help of the Lipschitz regularity value of local modulus maxima of codon circular angles. Then the watermark is embedded into circular angles of triplet codons without changing the codes of amino acids in a DNA. The length and location of target triplet codons depend on the random mapping table for 64 codons that includes start and stop codons. This table is used as the watermark key and can be applied on any codon sequence regardless of the length of sequence. If this table is unknown, it is very difficult to detect the length and location of them for extracting the watermark. We evaluated our method and DNA-crypt watermarking of Heider method on the condition of similar capacity. From evaluation results, we verified that our method has lower base changing rate than DNA-crypt and has lower bit error rate on point mutation and insertions/deletions than DNA-crypt. Furthermore, we verified that the entropy of random mapping table and the locaton of triplet codons is high, meaning that the watermark security has high level.

키워드

참고문헌

  1. T. Kazuo, O. Akimitsu, and S. Isao, "Public- Key Systems using DNA as a One-Way Function for Key Distribution," BioSystems, Vol. 81, No. 1, pp. 25-29, 2005. https://doi.org/10.1016/j.biosystems.2005.01.004
  2. A. Gehani, T. LaBean, and J. Reif, "DNAbased Cryptography," Aspects of Molecular Computing, Lecture Notes in Computer Science , Vol. 2950, pp. 34-50, 2004.
  3. C.T. Clelland, V. Risca, and C. Bancroft, "Hiding Messages in DNA Microdots," Nature, Vol. 399, No. 6736, pp. 533-534, June 1999. https://doi.org/10.1038/21092
  4. A. Leier, C. Richter, W. Banzhaf, and H. Rauhe, "Cryptography with DNA Binary Strands," Biosystems, Vol. 57, Issue 1, pp. 13-22, 2000. https://doi.org/10.1016/S0303-2647(00)00083-6
  5. B. Shimanovsky, J. Feng, and M. Potkonjak, "Hiding Data in DNA," Proc. of the 5th Intl. Workshop in Information Hiding, pp. 373-386, 2002.
  6. M. Arita, "Writing Information into DNA," Molecular Computing, Lecture Notes in Computer Science, Vol. 2950, pp. 23-35, 2004.
  7. N. Yachie, K. Sekiyama, J. Sugahara, Y. Ohashi, and M. Tomita, "Alignment-based Approach for Durable Data Storage Into Living Organisms," Biotechnol. Prog. Vol. 23, No. 2, pp. 501-505, 2007. https://doi.org/10.1021/bp060261y
  8. D. Heider and A. Barnekow, "DNA Watermarks in Non-Coding Regulatory Sequences," BMC Bioinformatics, Vol. 2, No. 125, doi:10.1186/1756-0500-2-125, 2009.
  9. D. Heider and A. Barnekow, "DNA-Based Watermarks using the DNA-Crypt Algorithm," BMC Bioinformatics, Vol. 8, No. 176, doi:10.1186/1471-2105-8-176, 2007.
  10. D. Heider and A. Barnekow, "DNA Watermarks - A Proof of Concept," BMC Bioinformatics, Vol. 9, No. 40, doi:10.1186/1471-2199-9-40, 2008.
  11. J. Shuhong and R. Goutte, "Code for Encryption Hiding Data Into Genomic DNA of Living Organisms," International Conference on Signal Processing (ICSP) , pp. 2166-2169, 2008.
  12. S.H. Lee and K.R. Kwon, "Robust DNA Watermarking Based on Coding DNA Sequence," The Institute of Electronics Engineers of Korea, Vol. 49-CI, No. 2, pp. 123-133, 2012.
  13. S.H. Lee, S.G. Kwon, and K.R. Kwon, "A Robust DNA Watermarking in Lifting Based 1D DWT Domain," The Institute of Electronics Engineers of Korea, , Vol. 49, No. 10, pp. 91-101, 2012. https://doi.org/10.5573/ieek.2012.49.10.091
  14. F Balado, "On the Embedding Capacity of DNA Strands Under Insertion, Deletion and Substitution Mutations," SPIE Media Forensics and Security XII , Vol. 7541, 2010.
  15. S. Mallat and S. Zhong, "Characterization of Signals from Multiscale Edges," IEEE Trans. Pattern Anal. Machine Intell., Vol. 14, Issue 7, pp. 710-732, 1992. https://doi.org/10.1109/34.142909
  16. B.J. Jang, S.H. Lee, and K.R. Kwon, "Active Video Watermarking Technique for Infectious Information Hiding System," Journal of Korea Multimedia Society, Vol. 15, No. 8, pp. 1017-1030, 2012. https://doi.org/10.9717/kmms.2012.15.8.1017
  17. W.J. Kim, T.Y. Seung, S.H. Lee, and K.R. Kwon, "An Information Security Scheme Based on Video Watermarking and Encryption for H.264 Scalable," Journal of Korea Multimedia Society, Vol. 15, No. 3, pp. 299-311, 2012. https://doi.org/10.9717/kmms.2012.15.3.299

피인용 문헌

  1. 바이오 정보보호 위한 히스토그램 쉬프팅 기반 가역성 DNA 워터마킹 기법 vol.20, pp.2, 2017, https://doi.org/10.9717/kmms.2017.20.2.244