DOI QR코드

DOI QR Code

Electrochemistry of Gallium

  • Chung, Yonghwa (Department of Advanced Materials Chemistry, Korea University) ;
  • Lee, Chi-Woo (Department of Advanced Materials Chemistry, Korea University)
  • Received : 2013.03.07
  • Accepted : 2013.03.27
  • Published : 2013.03.30

Abstract

Gallium is an important element in the production of a variety of compound semiconductors for optoelectronic devices. Gallium has a low melting point and is easily oxidized to give oxides of different compositions that depend on the conditions of solutions containing Ga. Gallium electrode reaction is highly irreversible in acidic media at the dropping mercury electrode. The passive film on a gallium surface is formed during anodic oxidation of gallium metal in alkaline media. Besides, some results in published reports have not been consistent and reproducible. An increase in the demand of intermetallic compounds and semiconductors containing gallium gives rise to studies on electrosynthesis of them and an increase of gallium concentration in the environment with various application of gallium causes the development of electroanalysis tools of Ga. It is required to understand the electrochemistry of Ga and to predict the electrochemical behavior of Ga to meet these needs. Any review papers related to the electrochemistry of gallium have not been published since 1978, when the review on the subject was published by Popova et al. In this study, the redox behavior, anodic oxidation, and electrodeposition of gallium, and trace determination of gallium by stripping voltammetries will be reviewed.

Keywords

References

  1. R. R. Moskalyk, Miner. Eng., 16, 921 (2003). https://doi.org/10.1016/j.mineng.2003.08.003
  2. A. P. Thompson, "Gallium", C.A. Hampel (ed.) Rare metals handbook, Chapman and Hall Ltd, London, pp 178-187 (1961).
  3. B. W. Jaskula, "Gallium", United State Geological Survey (USGS) Mineral Commodity Summaries, January, (2012).
  4. A. R. Despic, D. M. Drazic, M. M. Purenovic, and N. Cikovic, J. Appl. Electrochem., 6, 527 (1976). https://doi.org/10.1007/BF00614541
  5. J. V. Kamat, S. K. Guin, J. S. Pillai, and S. K. Aggarwal, Talanta, 86, 256 (2011). https://doi.org/10.1016/j.talanta.2011.09.010
  6. R. Piech and B. Bas, Int. J. Envir. Anal. Chem., 91, 410 (2011). https://doi.org/10.1080/03067310903276282
  7. E. D. Moorhead and P. H. Davis, Anal. Chem., 47, 622 (1975). https://doi.org/10.1021/ac60354a013
  8. T. I. Popova, I. A. Bagotskaya, and E. D. Moorhead, "Gallium", A.J. Bard (ed.) Encyclopedia of electrochemistry of the elements, vol. 8. Marcel Dekker Inc, New York, pp 207-262 (1978).
  9. M. Pourbaix, Atlas of electrochemical equilibria in aqueous solutions, NACE International, pp 428-435 (1974).
  10. J. D. Corbett and R.K. Mcmullan, J. Am. Chem. Soc., 77, 4217 (1955). https://doi.org/10.1021/ja01621a009
  11. P. Sipos, T. Megyes, and O. Berkesi, J. Solution Chem., 37, 1411 (2008). https://doi.org/10.1007/s10953-008-9314-y
  12. U. Anders and J. A. Plambeck, Can. J. Chem., 47, 3055 (1969). https://doi.org/10.1139/v69-504
  13. T. W. Richards and S. Boyer, J. Am. Chem. Soc., 43, 274. (1921). https://doi.org/10.1021/ja01435a005
  14. W. M. Saltman and N. H. Nachtriev, J. Electrochem. Soc., 100, 126. (1953). https://doi.org/10.1149/1.2781093
  15. W. M. MacNevin and E. D. Moorhead, J. Am. Chem. Soc., 81, 6382 (1959). https://doi.org/10.1021/ja01533a012
  16. E. D. Moorhead, J. Am. Chem. Soc., 87, 2503 (1965). https://doi.org/10.1021/ja01089a043
  17. S. G. Christov and S. Rajceva, Z. Elektrochem., 66, 484 (1962).
  18. E. N. Potapova and I. A. Bagotskaya, Elektrokhimiya, 5, 1007 (1969).
  19. I. A. Bagotskaya and E. N. Potapova, Elektrokhimiya, 6, 855 (1970).
  20. A. Frumkin and A. Gorodetskaya, Z. Phys. Chem., 136, 215 (1928).
  21. D. C. Grahame, Anal. Chem., 30, 1736 (1958). https://doi.org/10.1021/ac60143a006
  22. N. B. Grigoryev, S. A. Fateev, and I. A. Bagotskaya, Elektrokhimiya, 8, 311 (1972).
  23. A. J. Gokhshtein, Elektrokhimiya, 7, 3 (1971).
  24. G. Wolf, Z. Phys. Chem., 223, 249 (1963).
  25. K. Schwabe, Z. Phys. Chem., 211, 170 (1959).
  26. O. Stelling, Z. Elektrochem., 41, 712 (1935).
  27. S. Rajceva and L. Andreeva, C.R. Acad. Bulg. Sci., 19, 925 (1966).
  28. F. F. Faizullin and E. N. Nikitin, Elektrokhimiya, 2, 112 (1966).
  29. F. F. Faizullin, E. N. Nikitin, N. N. Gudina, and S. M. Yamolotdinov, Issled. Elektrokhim. Kazan, 1969 (2), 117 (1969).
  30. T. I. Lezhava and A. T. Vagramyan, Elektrokhimiya, 1, 321 (1965).
  31. D. Belaschk, Z. Phys. Chem., 234, 258 (1967).
  32. T. I. Popova, N. A. Simonova, Z. J. Moyseeva, and N. G. Bardina, Elektrokhimiya, 6, 706 (1970).
  33. R. D. Armstrong, W. P. Race, and H. R. Thirsk, J. Electroanal. Chem., 31, 405 (1971). https://doi.org/10.1016/S0022-0728(71)80168-7
  34. T. Hurlen, T. Valand, and G. Lunde, Electrochim. Acta, 9, 1433 (1964). https://doi.org/10.1016/0013-4686(64)85024-6
  35. J. D. Corbett, J. Electrochem. Soc., 109, 1214 (1962).
  36. T. Hurlen, Electrochim. Acta, 9, 1449 (1964). https://doi.org/10.1016/0013-4686(64)85026-X
  37. I. A. Bagotskaya and N. M. Genkina, Elektrokhimiya, 3, 1485 (1967).
  38. S. A. Levitskaya, M. S. Polagutina, and A. I. Zebreva, Usp. Sov. Polagr., 1972, 37 (1972).
  39. I. G. Vasil'eva and A. I. Zebreva, Zh. Fiz. Khim., 38, 1774 (1964).
  40. I. A. Bagotskaya and D. K. Durmanov, Elektrokhimiya, 4, 1414 (1968).
  41. J. O'M. Bockris and M. Enyo, J. Electrochem. Soc., 109, 48 (1962). https://doi.org/10.1149/1.2425324
  42. V. M. Kochegarov and T. P. Lomakina, Zh. Fiz. Khim., 38, 2703 (1964).
  43. I. G. Vasil'eva and A. I. Zebreva, Elektrokhimiya, 1, 146 (1965).
  44. Y. Chung and C-W Lee, J. Electrochem. Sci. Tech., 3, 1 (2012). https://doi.org/10.5229/JECST.2012.3.1.1
  45. V. S. Saji and C-W Lee, RSC Adv., Accepted (2013)
  46. E. D. Moorhead and G. M. Frame II, J. Electroanal. Chem. Interfacial Electrochem., 18, 197 (1968). https://doi.org/10.1016/S0022-0728(68)80177-9
  47. C. A. Stoll, G. M. Frame II, and E. D. Moorhead, Anal. Lett., 1, 861 (1968). https://doi.org/10.1080/00032716808051716
  48. A. Iwasinska, Z. Stojek, and Z. Kublik, J. Electroanal. Chem., 179, 141 (1984). https://doi.org/10.1016/S0022-0728(84)80283-1
  49. E. D. Moorhead and G. M. Frame II, Anal. Chem., 40, 280 (1968). https://doi.org/10.1021/ac60258a016
  50. H. S. Sharma, T. K. Bhardwaj, P. C. Jain, and S. K. Aggarwal, Ind. J. Chem., 45A, 643 (2006).
  51. E. D. Moorhead and T. S. Robison, Anal. Chem., 64, 833 (1992). https://doi.org/10.1021/ac00032a003
  52. V. Sharma and K. D. Gupta, Monatsh Chem., 142, 481 (2011). https://doi.org/10.1007/s00706-011-0481-y
  53. L. F. Kozin and A. V. Gaidin, Russ. J. Appl. Chem., 82, 406 (2009). https://doi.org/10.1134/S1070427209030124
  54. P. Cofre, G. East, and C. Aguirre, Talanta, 39, 621 (1992). https://doi.org/10.1016/0039-9140(92)80071-K
  55. P. Y. Chen, Y. F. Lin, and I. W. Sun, J. Electrochem. Soc., 146, 3290 (1999). https://doi.org/10.1149/1.1392469
  56. V. V. Smolenski, A. A. Khokhrykov, A. L. Bove, and A. G. Osipenko, AIP Conf. Proc., 673, 321 (2003).
  57. L. H. S. Gasparotto, N. Borisenko, O. Höfft, R. Al- Salman, W. Maus-Friedrichs, N. Bocchi, and S. Zein El Abedin, and F. Endres, Electrochim. Acta, 55, 218–226 (2009). https://doi.org/10.1016/j.electacta.2009.08.041
  58. E. V. Nikitin, S. V. Kuzovenko, and F. F. Faizullin, Sov. Electrochem., 7, 1062 (1971).
  59. R. S. Perkins, J. Electroanal. Chem., 101, 47 (1979). https://doi.org/10.1016/S0022-0728(79)80078-9
  60. N. P. Selekhova, N. A. Lyubimova, and D. I. Leikis, Elektrokhimiya, 8, 721 (1972).
  61. A. Varadharaj and G. Prabhakara Rao, J. Electroanal. Chem., 138, 189 (1982). https://doi.org/10.1016/0022-0728(82)87139-8
  62. A. Varadharaj and G. Prabhakara Rao, Bull. Electrochem., 6, 482 (1990).
  63. A. Varadharaj and G. Prabhakara Rao, Proc. Indian Acad. Sci. (Chem. Sci.), 102, 177 (1990).
  64. R. S. Perkins, J. Electrochem. Soc., 119, 713 (1972). https://doi.org/10.1149/1.2404301
  65. V. N. Korshunov, Russ. J. Eledctrochem., 31, 1036 (1995).
  66. V. N. Korshunov, Russ. J. Electrochem., 33, 919 (1997).
  67. A. Tsvetanova, E. I. Sokolova, and S. N. Raicheva, Soviet Electrochem., 15, 185 (1979).
  68. Z. G. Gasanly and T. L. Guseinzaden, Russ. J. Appl. Chem., 81, 1565 (2008). https://doi.org/10.1134/S1070427208090176
  69. D. O. Flamini, S. B. Saidman, and J. B. Bessone, J. Appl. Electrochem., 37, 467 (2007). https://doi.org/10.1007/s10800-006-9277-x
  70. M. Al Zoubi, R. Al-Salman, S. Z. El Abedin, Y. Li, and F. Endres, ChemPhysChem, 12, 2751 (2011). https://doi.org/10.1002/cphc.201100464
  71. L. F. Kozin, T. V. Popova, A. K. Dzhasymbekov, and R. G. Sarmurzina, Elektrokhimiya, 17, 655 (1981).
  72. A. Varadharaj and G. Prabhakara Rao, J. Appl. Electrochem., 16, 929 (1986). https://doi.org/10.1007/BF01006540
  73. R. Dorin and E. J. Frazer, J. Appl. Electrochem., 18, 134 (1988). https://doi.org/10.1007/BF01016217
  74. A. Varadharaj, L. Swati, J. A. M. Abdulkader, N. Sathaiyan, and R. Srinivasan, Bull. Electrochem., 4, 385 (1988).
  75. A. Varadharaj, R. Srinivasan, and G. Prabhakara Rao, J. Appl. Electrochem., 19, 61 (1989). https://doi.org/10.1007/BF01039390
  76. R. C. Paciej, G. L. Cahen, G. E. Stoner, and E. Gileadi, J. Electrochem. Soc., 132, 1307 (1985). https://doi.org/10.1149/1.2114107
  77. F. Paolucci, G. Mengoli, and M. M. Musiani, J. Appl. Electrochem., 20, 868 (1990). https://doi.org/10.1007/BF01094319
  78. J. Kois, M. Ganchev, M. Kaelin, S. Bereznev, E. Tzvetkova, O. Volobujeva, N. Stratieva, and A. N. Tiwari, Thin Solid Films, 516, 5948 (2008). https://doi.org/10.1016/j.tsf.2007.10.080
  79. Y. Lai, F. Liu, Z. Zhang, J. Liu, Y. Li, S. Kuang, J. Li, and Y. Liu, Electrochim. Acta, 54, 3004 (2009). https://doi.org/10.1016/j.electacta.2008.12.016
  80. Y. Lai, J. Liu, J. Yang, B. Wang, F. Liu, Z. Zhang, J. Li, and Y. Liu, J. Electrochem. Soc., 158, D704 (2011). https://doi.org/10.1149/2.059112jes
  81. D. Iselt, U. Gaitzsch, S. Oswald, S. Fähler, L. Schultz, and H. Schlörb, Electrochim. Acta, 56, 5178 (2011). https://doi.org/10.1016/j.electacta.2011.03.046
  82. S. M. Reddy, J. J. Park, S-M Na, M. M. Magableh, A. B. Flatau, and B.J.H. Stadler, Adv. Funct. Mater., 21, 4677 (2011). https://doi.org/10.1002/adfm.201101390
  83. M. K. Carpenter and M. W. Verbrugge, J. Electrochem. Soc., 137, 123 (1990). https://doi.org/10.1149/1.2086346
  84. E. D. Moorhead and G. M. Frame II, J. Phys. Chem., 72, 3684 (1968). https://doi.org/10.1021/j100856a061
  85. V. Sharma and K. D. Gupta, Asian J. Chem., 16, 1398 (2004).
  86. A. J. Bard and L. R. Faulkner, Chap. 5 and 8, Electrochemical Methods: Fundamentals and Applications, John Wiley & Sons, New York (1980).
  87. E. D. Moorhead and N. H. Furman, Anal. Chem., 32, 1507 (1960). https://doi.org/10.1021/ac60167a034
  88. J. J. Lingane and B. A. Loveridge, J. Am. Chem. Soc., 72, 438 (1968).
  89. S. Kariuki and H. Dewald, Electroanalysis, 9, 231 (1997). https://doi.org/10.1002/elan.1140090308
  90. R. Kalvoda and M. Kopanica, Pure & Appl. Chem., 61, 97 (1989). https://doi.org/10.1351/pac198961010097
  91. C. M. G. Van den Berg, Analyst, 114, 1527 (1989). https://doi.org/10.1039/an9891401527
  92. R. Udisti and G. Piccardi, Fresen. Z. Anal. Chem., 331, 35 (1988). https://doi.org/10.1007/BF00473892
  93. E. D. Moorhead and G. A. Forsberg, Anal. Chem., 48, 751 (1976). https://doi.org/10.1021/ac60368a022
  94. P. Cofre and K. Brinck, Talanta, 39, 127 (1992). https://doi.org/10.1016/0039-9140(92)80007-Z
  95. G. East and P. Cofre, Talanta, 40, 1273 (1993). https://doi.org/10.1016/0039-9140(93)80198-Z
  96. L'. Medvecky and J. Brianein, Chem. Pap., 58, 93 (2004).
  97. H. S. Sharma, T. K. Bhardwaj, P. C. Jain, and S. K. Aggarwal, Talanta, 71, 1263 (2007). https://doi.org/10.1016/j.talanta.2006.06.030
  98. J. Wang and J. M. Zadeii, Anal. Chim. Acta, 185, 229 (1986). https://doi.org/10.1016/0003-2670(86)80050-2
  99. M. J. G. Gonzalez, O. D. Renedo, M. A. A. Lomillo, and M. J. A. Martínem, Talanta, 62, 457 (2004). https://doi.org/10.1016/j.talanta.2003.08.029
  100. B. Pihlar, P. Valenta, and H. W. Nürnberg, Fresen. Z. Anal. Chem., 307, 337 (1981). https://doi.org/10.1007/BF00480109
  101. C. M. G. Van den Berg and Z. Q. Huang, Anal. Chem., 56, 2383 (1984). https://doi.org/10.1021/ac00277a028
  102. M. Vega and C.M.G Van den Berg, Anal. Chim. Acta, 293, 19 (1994). https://doi.org/10.1016/0003-2670(94)00088-3
  103. J. Wang, B. Tian, and J. Lu, Talanta, 39, 1273 (1992). https://doi.org/10.1016/0039-9140(92)80236-7
  104. S. Sander and G. Henze, Fresen. J. Anal. Chem., 356, 259 (1996).
  105. L. Qu and W. Jin, Anal. Chim. Acta, 274, 65 (1993). https://doi.org/10.1016/0003-2670(93)80606-L
  106. X. Zhang, R. Chen, L. Wang, and C. Ma, Mikrochim. Acta, 118, 213 (1995). https://doi.org/10.1007/BF01244361
  107. R. Piech, Electroanalysis, 21, 1842 (2009). https://doi.org/10.1002/elan.200904621
  108. R. Piech, J. Appl. Electrochem., 41, 207 (2011). https://doi.org/10.1007/s10800-010-0225-4
  109. S. Pysarevska, L. Dubenska, N. Shajnoga, and H. Levytska, Chem. Met. Alloys, 2, 194 (2009).
  110. S.K. Mohamed, Anal. Chim. Acta, 562, 204 (2006). https://doi.org/10.1016/j.aca.2006.01.014
  111. A. Abbaspour, S.M. Khoshfetrat, H. Sharghi, and R. Khalifeh, J. hazard. Mater., 185, 101 (2011). https://doi.org/10.1016/j.jhazmat.2010.09.002

Cited by

  1. Electrochemistry of layered GaSe and GeS: applications to ORR, OER and HER vol.18, pp.3, 2016, https://doi.org/10.1039/C5CP06682D
  2. Insights into Interfacial Changes and Photoelectrochemical Stability of InxGa1–xN (0001) Photoanode Surfaces in Liquid Environments vol.8, pp.12, 2016, https://doi.org/10.1021/acsami.5b12583
  3. Static Capacitance at the Electrochemical Liquid-liquid Interface Between Ionic Liquids and Eutectic Ga-In Alloy Measured Using the Pendant Drop Method 2018, https://doi.org/10.5796/electrochemistry.17-00081
  4. Nucleation Process of Indium on a Copper Electrode vol.4, pp.3, 2013, https://doi.org/10.5229/JECST.2013.4.3.93
  5. Electrochemical studies of ascorbic acid, dopamine, and uric acid at a dl-norvaline-deposited glassy carbon electrode vol.92, pp.4, 2014, https://doi.org/10.1139/cjc-2014-0024
  6. Electrochemical Atomic Layer Deposition of CuIn (1-x) Ga x Se 2 on Mo Substrate vol.164, pp.14, 2017, https://doi.org/10.1149/2.1231714jes
  7. Role of Some Benzohydrazide Derivatives as Corrosion Inhibitors for Carbon Steel in HCl Solution vol.4, pp.2, 2013, https://doi.org/10.5229/JECST.2013.4.2.61
  8. Solution processed liquid metal-conducting polymer hybrid thin films as electrochemical pH-threshold indicators vol.3, pp.29, 2015, https://doi.org/10.1039/C5TC00753D
  9. Adsorptive Cathodic Stripping Voltammetric Method for Determination of Gallium Using an In Situ Plated Lead Film Electrode vol.27, pp.11, 2015, https://doi.org/10.1002/elan.201500235
  10. Discovery of a Voltage-Stimulated Heartbeat Effect in Droplets of Liquid Gallium vol.121, pp.2, 2018, https://doi.org/10.1103/PhysRevLett.121.024302