DOI QR코드

DOI QR Code

Optimization of the Profiles in MeV Implanted Silicon Through the Modification of Electronic Stopping Power

  • Jung, Won-Chae (Department of Electronic Engineering, Kyonggi University)
  • 투고 : 2012.11.07
  • 심사 : 2013.02.19
  • 발행 : 2013.04.25

초록

The elements B, P and As can each be implanted in silicon; for the fabrication of integrated semiconductor devices and the wells in CMOS (complementary metal oxide semiconductor). The implanted range due to different implanted species calculated using TRIM (Transport of Ions in Matter) simulation results was considered. The profiles of implanted samples could be measured using SIMS (secondary ion mass spectrometry). In the comparison between the measured and simulated data, some deviations were shown in the profiles of MeV implanted silicon. The Moliere, C-Kr, and ZBL potentials were used for the range calculations, and the results showed almost no change in the MeV energy region. However, the calculations showed remarkably improved results through the modification of the electronic stopping power. The results also matched very well with SIMS data. The calculated tolerances of $R_p$ and ${\Delta}R_p$ between the modified $S_e$ of TRIM and SIMS data were remarkably better than the tolerances between the TRIM and SIMS data.

키워드

참고문헌

  1. U. Littmark and J. F. Ziegler, Phys. Rev. 23, (1980) [DOI: http:// dx.doi.org/10.1103/PhysRevA.23.64].
  2. J. P. Biersack and J. F. Ziegler, "Ion Implantation Techniques", Springer-Verlag, Berlin, (1982) p. 281
  3. W. C. Jung, J. KEEME, 15, 289, (2002).
  4. W. C. Jung, J. Korean Phys. Soc., 46, 1218, (2005).
  5. W. C. Jung and K. D. Lee, J. Korean Phys. Soc, 45, 1078, (2004).
  6. R. G. Wilson, J. Appl. Phys. 54, 6879, (1983) [DOI: http://dx.doi. org/10.1063/1.331993].
  7. L. Frey, S. Bogen, L. Gong, W. Jung, and H. Ryssel, Nucl. Instrum. Methods Phys. Res. Sect. B 62 410, (1992) [DOI: http:// dx.doi.org/10.1016/0168-583X(92)95267-U].
  8. L. Gong, S. Bogen, L. Frey, W. Jung and H. Ryssel, Microelectron. Eng. 19, 495, (1992) [DOI: http://dx.doi.org/10.1016/0167- 9317(92)90482-7].
  9. J. P. Biersack, Nucl. Instrum. Methods Phys. Res. B 35, 205, (1988) [DOI: http://dx.doi.org/10.1016/0168-583x(88)90272-8].
  10. T. E. Seidel, Nucl. Instrum. Methods Phys. Res. B 21, 96, (1987) [DOI: http://dx.doi.org/10.1016/0168-583x(87)90805-6].
  11. J. Lindhard, and M. Scharff, Phys., Rev., 124, 128, (1961) [DOI: http://dx.doi.org/10.1103/physRev. 124. 128]
  12. J. Lindhard, M. Scharff, and H. schiOtt, Mat., Fys., Medd., Dan., Vid, Selsk, 33, Nr. 14, (1963).
  13. H. Ryssel and I. Ruge, "Ion Implantation", Wiley, New York, (1986) p. 125.
  14. A. F. Tasch and S. K. Banerjee, Nucl. Instrum. Methods Phys. Res. Sect. B 112, 177, (1996) [DOI: http://dx.doi.org/10.1016/0168- 583X(95)01246-X].
  15. J. F. Gibbons, "Ion implantation in Semiconductors, Part 1, Range Distribution Theory and Experiments", Proc. IEEE, March 56, Nr. 3, 295, (1968). https://doi.org/10.1109/PROC.1968.6273
  16. W. Eckstein, "Computer simulation of Ion-Solid Interactions", Springer, Berlin, (1991) p. 40.
  17. Z. F. Ziegler, www.srim.org, (2013).