DOI QR코드

DOI QR Code

The Dry Etching of TiN Thin Films Using Inductively Coupled CF4/Ar Plasma

  • Woo, Jong-Chang (Nano Convergence Sensor Research Section, Electronics and Telecommunications Research Institute) ;
  • Choi, Chang-Auck (Nano Convergence Sensor Research Section, Electronics and Telecommunications Research Institute) ;
  • Joo, Young-Hee (School of Electrical and Electronics Engineering, Chung-Ang University) ;
  • Kim, Han-Soo (School of Electrical and Electronics Engineering, Chung-Ang University) ;
  • Kim, Chang-Il (School of Electrical and Electronics Engineering, Chung-Ang University)
  • 투고 : 2012.12.24
  • 심사 : 2013.01.23
  • 발행 : 2013.04.25

초록

In this study, we changed the input parameters (gas mixing ratio, RF power, DC bias voltage, and process pressure), and then monitored the effect on TiN etch rate and selectivity with $SiO_2$. When the RF power, DC-bias voltage, and process pressure were fixed at 700 W, - 150 V, and 15 mTorr, the etch rate of TiN increased with increasing $CF_4$ content from 0 to 20 % in $CF_4$/Ar plasma. The TiN etch rate reached maximum at 20% $CF_4$ addition. As RF power, DC bias voltage, and process pressure increased, all ranges of etch rates for TiN thin films showed increasing trends. The analysis of x-ray photoelectron spectroscopy (XPS) was carried out to investigate the chemical reactions between the surfaces of TiN and etch species. Based on experimental data, ion-assisted chemical etching was proposed as the main etch mechanism for TiN thin films in $CF_4$/Ar plasma.

키워드

참고문헌

  1. K. C. Park, K.B. Kim, I. J. M. M. Raaijmakers, K. Ngan; J. Appl. Phys. 80 (1996) 5674 [DOI: http://dx.doi.org/10.1063/1.363620].
  2. R. Hegde, R. Flodalice, E. Travis, P. Tobin; J. Vac. Sci. Technol. B 11 (1993) 1287 [DOI: http://dx.doi.org/10.1116/1.586931].
  3. G. Druais, G. Dilliway, P. Fischer, E. Guidotti, O. Lühn, A. Radisic, S. Zahraoui; Microelectron. Eng. 85 (2008) 1957 [DOI: http:// dx.doi.org/10.1016/j.mee.2008.06.004].
  4. L. Tsetseris, S. Logothetidis, S.T. Pantelides; Appl. Phys. Lett. 94 (2009) 161903 [DOI: http://dx.doi.org/10.1063/1.3122344].
  5. M. Kadoshima, T. Matsuki, S. Miyazaki, K. Shiraishi, T. Chikyo, K. Yamada, T. Aoyama, Y. Nara, Y. Ohji; Electr. Dev. Lett. 30 (2009) [DOI: http://dx.doi.org/466.10.1109/LED.2009.2016585].
  6. J. K. Schaeffer, D. C. Gilmer, C. Capasso, S. Kalpat, B. Taylor, M. V. Raymond, D. Triyoso, R. Hegde, S. B. Samavedam, B. E. White; Microelectron. Eng. 84 (2007) 2196 [DOI: http://dx.doi.org/10.1016/j.mee.2007.04.130].
  7. H. K. Chiu, T. L. Lin, Y. Hu, K. C. Leou, H. C. Lin, M. S. Tsai, T. Y. Huang; J. Vac. Sci. Technol. A 19 (2001) 455 [DOI: http://dx.doi. org/10.1116/1.1342866].
  8. J. Tonotani, T. Iwamoto, F. Sato, K. Hattori, S. Ohmi, H. Iwai; J. Vac. Sci. Technol. B 21 (2003) 2163 [DOI: http://dx.doi.org/10.1116/1.1612517].
  9. D. Shamiryan, V. Paraschiv, S. Eslava-Fernedez, M. Demand, M. Baklanov, S. Beckx, W. Boullart; J. Vac. Sci. Technol. B 25 (2007) 739 [DOI: http://dx.doi.org/10.1116/1.2731333].
  10. W. S. Hwang, J. Chen, W.J. Yoo; J. Vac. Sci. Technol. A 23 (2005) 964 [DOI: http://dx.doi.org/10.1116/1.1927536].
  11. K. T. Kim, C.I. Kim; Thin Solid Films 472 (2005) 26 [DOI: http:// dx.doi.org/10.1016/j.tsf.2004.05.128].
  12. A. M. Efremov, S. M. Koo, D. P. Kim, K. T. Kim, C. I. Kim; J. Vac. Sci. Technol. A 22, 2101 (2004) [DOI: http://dx.doi.org/10.1116/1.1772370].
  13. G. H. Kim, C.I. Kim, A.M. Efremov; Vacuum 79 (2005) 231 [DOI: http://dx.doi.org/10.1016/j.vacuum.2005.03.012].
  14. A. M. Efremov, D. P. Kim, C. I. Kim; Vacuum 75 (2004) 133 [DOI: http://dx.doi.org/10.1016/j.vacuum.2004.01.077].
  15. R. d'Agostino, F. Fracassi, C. Pacifico; J. Appl. Phys. 72 (1992) 4351 [DOI: http://dx.doi.org/10.1063/1.352199].
  16. T. Matsuki, T. Watanabe, T. Miura, N. Mise, T. Eimori, Y. Nara, Y. Ohji, A. Uedono, K. Yamada; Jpn. J. Appl. Phys. 46 (2007) L1219 [DOI: http://dx.doi.org/10.1143/JJAP.42.L1219].
  17. G. Prumper, X. J. Liu, K. Ueda, Y. Tamenori; Radiation Physics and Chemistry 75 (2006) 2019 [DOI: http://dx.doi.org/10.1016/j.radphyschem.2005.11.020].

피인용 문헌

  1. High aspect ratio titanium nitride trench structures as plasmonic biosensor vol.7, pp.11, 2017, https://doi.org/10.1364/OME.7.004171