DOI QR코드

DOI QR Code

4S 해상 통신을 위한 채널 추정 알고리즘 비교 연구

Comparison Study of Channel Estimation Algorithm for 4S Maritime Communications

  • 최명수 (목포대학교 정보산업연구소) ;
  • 이성로 (목포대학교 정보전자공학과)
  • 투고 : 2013.01.14
  • 심사 : 2013.03.08
  • 발행 : 2013.03.29

초록

본 논문에서는 4S (Ship to Ship, Ship to Shore) 해상통신을 위해 다른 채널 조건 하에서 기존의 채널 추정 기법을 비교하였다. 일반적으로 수신 신호는 다중경로나 부호 간 간섭에 의해 손상을 받게 된다. 시간 변화 다중 페이딩 채널의 추정은 수신기에서 어려운 작업이며, 적절한 채널 추정 필터를 사용함으로써 수신기의 성능을 향상시킬 수 있다. 모의실험은 MATLAB을 사용하여 AWGN (Additive White Gaussian Noise), Rician, Rayleigh 채널에서 채널 추정 알고리즘으로 주로 사용되어지는 LMS (Least Mean Square)와 RLS (Recursive Least-Squares) 알고리즘을 비교 하였다.

In this paper, we compare the existing channel estimation technique for 4S (Ship to Ship, Ship to Shore) maritime communications under AWGN channel model, Rician fading channel model, and Rayleigh fading channel model respectively. In general, the received signal is corrupted by multipath and ISI (Inter Symbol Interference). The estimation of a time-varying multipath fading channel is a difficult task for the receiver. Its performance can be improved if an appropriate channel estimation filter is used. The simulation is performed in MATLAB. In this simulation, we use the popular estimation algorithms, LMS (Least Mean Square) and RLS (Recursive Least-Squares) are compared with respect to AWGN, Rician and Rayleigh channels.

키워드

참고문헌

  1. J. M. Kim and W. S. Shim, "Technology Srandardization Trends of e-Navigation," Telecommun. Technol. Assoc., (TTA), vol. 126, no. 1, pp. 38-44, Nov. 2009.
  2. D. L. Jones, S. Appadwedula., M. Berry, M. Haun, D. Moussa, and D. Sachs, Adaptive Filtering: LMS Algorithm [Online], available: http://cnx.rice.edu/content/m10481/2.13/.
  3. S. Haykin, Adaptive Filter Theory, 4th Ed., PrenticeHall, 2009.
  4. M. C. Vanderveen, A. J. van der Veen, and A. Paulaj, "Estimation of multipath parameters in wireless communications," IEEE Trans. Signal Process., vol. 46, no. 3, pp. 682-690, Mar. 1998. https://doi.org/10.1109/78.661335
  5. A. R. Athanasios, B. Kostas, M. Alexandra and P. Jacques, "Efficient semi-blind estimation of multipath channel parameters via a delay decoupling optimization approach," Signal Process., vol. 85, no. 12, pp. 2394-2411, Dec. 2005. https://doi.org/10.1016/j.sigpro.2005.02.018
  6. M. Mossberg, E. K. Larsson, and E. Mossberg, "Long-term fading channel estimation from sample covariances," Automatica, vol. 45, no. 5, pp. 1126-1133, May 2009. https://doi.org/10.1016/j.automatica.2008.12.013
  7. Wikipedia. Additive white Gaussian noise [Online], available: http://en.wikipedia.org/wiki/Additive_white_Ga ussian_noise.
  8. Wikipedia. Rician fading [Online], available: http://en.wikipedia.org/wiki/Rician_fading.
  9. L. Wang and Y. H. Cheng, "A statistical mobile to mobile Rician fading channel model," IEEE Veh. Technol. Conf. (IEEE VTC 2005), pp. 63-67, Stockholm, Wweden, May 2005.
  10. Wikipedia. Rayleigh fading [Online], available: http://en.wikipedia.org/wiki/Rayleigh_fading.
  11. C. S. Patel, G. L. Stuber, and T. G. Pratt, "Simulation of Rayleigh faded mobile to mobile communication channels," IEEE Veh. Technol. Conf. (IEEE VTC 2003), vol. , no. 1, pp. 163-167, Orlando, USA, Oct. 2003.
  12. G. J. Nam, "Modelling of Rayleigh and Rician Mobile Fading Channel," J. Inst. Electron. Eng. Korea (IEEK), vol. 44, no. 4, pp. 41-47, Dec. 2007.
  13. M. S. Lim, K. S. Kim, Y. Lee and S. R. Lee, "Dynamic Spectrum Allocation Algorithm for Maritime communications using Spectrum Sharing and Priority," Korean Inst. Commun. Inform. Sci. J. (KICS), vol. 35, no. 7, pp. 1001-1008, July 2010.