DOI QR코드

DOI QR Code

Compensating the Effect of Ship Rocking in Maritime Ship-to-Shore Communication

해상 선박-육상 통신시스템에서 선박의 흔들림 효과 상쇄방식 성능 분석

  • Received : 2013.01.14
  • Accepted : 2013.03.08
  • Published : 2013.03.29

Abstract

A novel approach to solve signal variation due to ship rocking in maritime wireless communication is introduced. We assume a ship-to-shore based communication scenario, where the transmitter is on shore and the receiver on the ship. Due to the ocean conditions, such as the presence of waves and wind etc. the ship is not stable and constantly experiences some form of rocking motion. This rocking motion causes the antenna on the ship to sway, creating instability in the signal reception. We envisage that the signal is offset at the receiver incurring high Bit Error Rate. This paper is to investigate and counter this problem by using Multiple-input Multiple-output (MIMO) technique. We propose to implement beamforming technique with multiple transmit antennas. The implementation of this proposed method crafts a robust maritime communication network.

본 논문에서는 해상 무선 통신에서 선박의 흔들림으로 인한 신호의 편차문제를 해결하기 위한 새로운 접근방법을 제안하였고, 이를 위해 송신기는 육상에 있고, 수신기는 선박에 위치한 선박과 육상의 통신 시나리오를 가정하였다. 선박은 파도와 바람의 영향으로 인한 해양의 환경 때문에 안정적이지 못하고, 지속적으로 흔들리게 되는데, 이러한 선박의 흔들림은 선박에 위치한 안테나의 흔들림을 유발하여 신호의 수신을 불안정하게 만든다. 여기서, 우리는 신호가 높은 비트 에러율을 발생 수신기에서 상쇄되는 것을 예측할 수 있는데, 이러한 문제를 해결하기 위해 MIMO기술을 사용하여 해결하였다. 본 논문에서 여러 송신 안테나를 사용하는 빔포밍 기술을 구현할 것을 제안하였으며, 제안 방법에 대한 기술의 구현은 강건한 해상 통신 네트워크를 구성할 수 있다.

Keywords

References

  1. J. G. Andrews, A. Ghosh, and R. Muhamed, Fundamentals of WiMAX: understanding broadband wireless networking, Upper Saddle River, NJ: Prentice Hall, 2007.
  2. W. Hubert, M. Y. L. Roux, M. Ney, and A. Flamand, "Impact of ship motion on maritime radio links", Int. J. Antennas and Propagation, vol. 2012, pp. 1-6, Nov. 2012.
  3. L. Mu, R. Kumar, and A. Prinz, "An integrated wireless communication architecture for maritime sector," in Proc. Int. Conf. on Multiple access commun 2011 (MACOM 2011), pp. 193-205, Trento, Italy, Sep. 2011.
  4. T. Keshav, S. Lee, "A study on the WiMAX propagation models for maritime radio links," in Proc. KICS Conf. Commun. 2012, vol 48, pp. 210-211, Jeju Island, Korea, June 2012.
  5. ITU, "Maritime broadband wireless mesh network," ITU-R. M.2202, Geneva, 2011.
  6. J. Joe, S. K. Hazra, S. H. Toh, W. M. Tan and J. Shankar, "5.8GHz fixed WiMAX performance in a seaport environment," in Proc. Veh. Technology. Conf. (VTC-2007), pp. 879-883, Sep. 2007.
  7. S. K. Lee, H. Choi, and S. Surendran, "Experimental studies on the slowly varying drift motion of a berthed container ship model," J. Ocean Eng., vol. 33, pp. 2454-2465, Nov. 2010.
  8. M. S. Denis and W. J. Pierson Jr, "On the motion of ships in confused seas," New York Univ., Nov. 1953.
  9. M. K. Ochi, Ocean waves: The stochastic approach, Cambridge University Press, 1998.
  10. Mayo and Ned, Ocean waves-their energy and power, Physics Teacher 35, Sep. 1997.
  11. M-T Zhou and H. Harada, "Cognitive maritime wireless mesh/ad hoc network," J. Network Computer Applicat., vol. 35, no. 2, pp. 518-526, ScienceDirect, 2012. https://doi.org/10.1016/j.jnca.2010.12.018
  12. W. M. Drennam, P. K. Taylor, and M. J. Yelland, "Parameterizing the sea surface roughness," J. Physical Oceanography, vol 35, no. 5, pp. 835-848, May 2005. https://doi.org/10.1175/JPO2704.1
  13. Pierson-Moskwitz Sea Spectrum, Retrived Nov. 28, 2012, [Online] Available: http://www.syqwestinc.com/support/Sea%20State%20Table.htm
  14. C. Oestges, B. Clerckx, MIMO wireless communication: From real-world propagation to space-time code design, Oxford Academic Press, 2007.
  15. P. A. Dighe, K. Mallik, and S. S. Jamuar, "Analysis of transmit-receive diversity in Rayleigh fading," IEEE Trans. Commun., vol. 51, no. 4, pp. 694-703, Apr. 2003. https://doi.org/10.1109/TCOMM.2003.810871