DOI QR코드

DOI QR Code

보로노이 셀에서 리만 적분을 이용한 임펄스 잡음 환경에서 동작하는 회전 변환 QPSK 기법의 성능 해석

Performance Analysis of a Rotation-Transform Aided QPSK over Impulsive Noise Using Rieman Integral over Voronoi Cell

  • 최병조 (인천대학교 임베디드시스템공학과 무선통신연구실)
  • 투고 : 2013.02.20
  • 심사 : 2013.03.11
  • 발행 : 2013.03.29

초록

임펄스 잡음에 강인한 2차 회전변환 기법을 적용한 QPSK 시스템에서 최대우도 복호기의 비트오율 성능을 정확하게 분석하였다. 이 분석 방법은 보로노이 셀에서 2차원 가우시안 Q-함수의 리만 적분을 응용한 것이다. 일반적인 2차 회전변환 기법에 대하여 보로노이 셀의 다양한 특징을 기하학적 방법으로 분석하여 정리하였다. 이러한 분석 결과를 이용하여 비트오율을 최소화하는 회전변환 파라미터를 도출하였으며, 기존의 근사적인 성능 해석 방법과의 차이도 고찰하였다.

An exact performance analysis of an ML detector for a 2-dimensional rotation-transform aided QPSK system operating over an impulsive noise environment is presented using Rieman integrals of a two-dimensional Gaussian Q-function over Voronoi cells. A set of interesting features of the Voronoi cells is also characterised systematically. An optimum rotation angle yielding the minimum BER is also studied. The differences between the proposed exact method and the previous approximate analysis method are investigated in terms of the corresponding BERs and the derived optimum angles.

키워드

참고문헌

  1. G. R. Lang, "Rotational transformation of signals," IEEE Trans. Inf. Theory, vol. IT-9, pp. 191-197, Jul. 1963.
  2. J. H. Conway and N. J. A. Sloane, Sphere packings, lattices and groups, 3rd ed, Springer, 1998.
  3. A. D. Spaulding and D. Middleton, "Optimum reception in an impulsive interference environment - Part I: coherent detection," IEEE Trans. Commun., vol. 25, no. 9, pp. 910-923, Sep. 1977. https://doi.org/10.1109/TCOM.1977.1093943
  4. B. Aazhang and H. V. Poor, "Performance of DS/SSMA commun. in impulsive channels - Part I: linear correlation receivers," IEEE Trans. Commun., vol. 35, no. 11, pp. 1179-1188, Nov. 1987.
  5. H. C. Kim, B. J. Ko and S. J. Cho, "Comprehensive performance analysis and comparison of various digital communication systems in a multipath fading channel with additive mixture of Gaussian and impulse noise: Part-1," J-KICS, vol. 14, no. 3, pp. 263-279, Jun. 1989.
  6. M. Ghosh, "Analysis of effect of impulsive noise on multicarrier and single carrier QAM systems," IEEE Trans. Commun., vol. 44, no. 2, pp. 145-147, Feb. 1996. https://doi.org/10.1109/26.486604
  7. G. W. Wornell, "Spread-response precoding for communication over fading channels," IEEE Trans. Commun., vol. 42, no. 2, pp. 488-501, Mar. 1996.
  8. V. Tarokh, N. Seshadri and A. R. Calderbank, "Space-time codes for high data rate wireless communication: performance criterion and code construction," IEEE Trans. Inf. Theory, vol. 44, no. 2, pp. 744-765, Mar. 1998. https://doi.org/10.1109/18.661517
  9. J. Boutros and E. Viterbo, "Signal space diversity: a power- and bandwidth -efficient diversity technique for the Rayleigh fading channel," IEEE Trans. Inf. Theory, vol. 44, no. 4, pp. 1453-1467, Jul. 1998. https://doi.org/10.1109/18.681321
  10. M. K. Simon and M.-S. Alouini, "A unified approach to the performance analysis of digital communications over generalized fading channels," Proc. IEEE, vol. 86, no. 9, pp. 1860-1877, Sep. 1998.
  11. M. Chiani, D. Dardari and M. K. Simon, "New exponential bounds and approximations for the computation of error probability in fading channels," IEEE Trans. Wireless Commun., vol. 2, no. 4, pp. 840-845, Jul. 2003.
  12. J. Haring and A. J. H. Vinck, "Coding and signal space diversity for a class of fading and impulsive noise channels," IEEE Trans. Inf. Theory, vol. 50, no. 5, pp. 887-895, May 2004. https://doi.org/10.1109/TIT.2004.826668
  13. S. H. Jang, Y. S. Park, and W. Y. Kim, "Improved Euclidean transform method using Voronoi diagram," J-KICS, vol. 29, no. 12C, pp. 1686-1691, Dec. 2004.
  14. M. C. Ju and I. M. Kim, "ML performance analysis of the decode-and-forward protocol in cooperative diversity networks," IEEE Trans. Wireless Commun., vol. 8, no. 7, pp. 3855-3867, Jul. 2009. https://doi.org/10.1109/TWC.2009.081470
  15. V. G. Chavali and C. R. C. M. da Silva, "Maximum-likelihood classification of digital amplitude-phase modulated signals in flat fading non-gaussian channels," IEEE Trans. Commun., vol. 59, no. 8, pp. 145-147, Aug. 2011.