DOI QR코드

DOI QR Code

Bacterial Community Structure Shift Driven by Salinity: Analysis of DGGE Band Patterns from Freshwater to Seawater of Hyeongsan River, Korea

염도의 변화에 따른 미생물 군집의 변화: 경북 형산강 하류 미생물 군집 변화의 DGGE pattern 분석

  • Beck, Bo Ram (East Sea Rim Marine and Fisheries Research Institute, Handong Global University) ;
  • Holzapfel, Wilhelm (East Sea Rim Marine and Fisheries Research Institute, Handong Global University) ;
  • Hwang, Cher Won (Global Leadership School, Handong Global University) ;
  • Do, Hyung Ki (East Sea Rim Marine and Fisheries Research Institute, Handong Global University)
  • 백보람 (한동대학교 환동해 해양수산연구소) ;
  • ;
  • 황철원 (한동대학교 GLS 학부) ;
  • 도형기 (한동대학교 환동해 해양수산연구소)
  • Received : 2012.11.15
  • Accepted : 2013.03.19
  • Published : 2013.03.30

Abstract

The influence of a gradual increase in salinity on the diversity of aquatic bacterial in rivers was demonstrated. The denaturing gradient gel electrophoresis (DGGE) was used to analyze the bacterial community shift downstream in the Hyeongsan River until it joins the open ocean. Four water samples were taken from the river showing the salinity gradients of 0.02%, 1.48%, 2.63%, and 3.62%. The samples were collected from four arbitrary stations in 2.91 km intervals on average, and a DGGE analysis was performed. Based on the results of this analysis, phylogenetic similarity identification, tree analysis, and a comparison of each station were performed. The results strongly suggested that the response of the bacterial community response was concomitant to gradual changes in salinity, which implies that salt concentration is a major factor in shifting the microbiota in aquatic habitats. The results also imply a huge diversity in a relatively small area upstream from the river mouth, compared to that in open oceans or coastal regions. Therefore, areas downstream towards a river mouth or delta are could be good starting points in the search for new bacterial species and strains ("biotypes").

강의 하류지역에서 미생물의 군집이 점진적인 염도의 증가에 따라 변한다는 것을 실험적으로 보기 위하여, 경북 형산강의 하류에서부터 연안해역으로 유입되는 곳까지 약 2.91 km 간격으로 0.02%, 1.48%, 2.63%, 3.62%의 염분을 포함하는 물 시료를 얻어 denaturing gradient gel electrophoresis (DGGE)를 수행하였다. 계통분석, 계통수 및 각 시료간의 연관성을 조사한 결과, 미생물 군집의 변화가 염분의 증가에 따라 점진적으로 변화하는 것을 확인하였으며, 이는 염분의 농도가 미생물 군집에 큰 영향을 미치는 요소임을 제시한다. 덧붙여 연안 지역이나 다른 수계환경에 비해 하류지역은 염분의 점진적인 변화로 인해 좁은 면적에 비하여 미생물 다양성이 크고, 이는 곧 특이하고 새로운 종을 찾기에 좋은 장소임을 시사하였다.

Keywords

References

  1. Ercolini, D. 2004. PCR-DGGE fingerprinting: novel strategies for detection of microbes in food. J Microbiol Methods 56, 297-314. https://doi.org/10.1016/j.mimet.2003.11.006
  2. Ghiglione, J. F., Palacios, C., Marty, J. C., Mevel, G., Labrune, C., Conan, P., Pujo-Pay, M., Garcia, N. and Goutx, M. 2008. Role of environmental factors for the vertical distribution (0-1000 m) of marine bacterial communities in the NW Mediterranean Sea. Biogeosci Discuss 5, 2131-2164. https://doi.org/10.5194/bgd-5-2131-2008
  3. Gouy, M., Guindon, S. and Gascuel, O. 2010. SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol Biol Evol 27, 221-224. https://doi.org/10.1093/molbev/msp259
  4. Hedlund, B. P., Geiselbrecht, A. D., Bair, T. J. and Staley, J. T. 1999. Polycyclic aromatic hydrocarbon degradation by a new marine bacterium, Neptunomonas naphthovorans gen. nov., sp. nov. Appl Environ Microbiol 65, 251-259.
  5. Holmfeldt, K., Dziallas, C., Titelman, J., Pohlmann, K., Grossart, H. and Riemann, L. 2009. Diversity and abundance of freshwater Actinobacteria along environmental gradients in the brackish northern Baltic Sea. Environ Microbiol 11, 2042-2054. https://doi.org/10.1111/j.1462-2920.2009.01925.x
  6. Jeffries, T. C., Seymour, J. R., Newton, K., Smith, R. J., Seuront, L. and Mitchell, J. G. 2011. Increases in the abundance of microbial genes encoding halotolerance and photosynthesis along a sediment salinity gradient. Biogeosci Discuss 8, 7551-7574. https://doi.org/10.5194/bgd-8-7551-2011
  7. Jiang, H., Huang, Q., Deng, S., Dong, H. and Yu, B. 2010. Planktonic Actinobacterial diversity along a salinity gradient of a river and five lakes on the Tibetan plateau. Extremophiles 14, 367-376. https://doi.org/10.1007/s00792-010-0316-5
  8. Kim, Y. J., Cho, H. J., Yu, S. N., Kim, K. Y., Kim, H. R. and Ahn, S. C. 2007 Diversity of marine microbes by PCR-DGGE. J Kor Fish Soc 40, 356-361.
  9. Langenheder, S., Kisand, V., Wikner, J. and Tranvik, L. J. 2003. Salinity as a structuring factor for the composition and performance of bacterioplankton degrading riverine DOC. FEMS Microbiol Ecol 45, 189-202. https://doi.org/10.1016/S0168-6496(03)00149-1
  10. Larkin, M. A., Blackshields, G., Brown, N. P., Chenna, R., McGettigan, P. A., McWilliam, H., Valentin, F., Wallace, I. M., Wilm, A., Lopez, R., Thompson, J. D., Gibson, T. J. and Higgins, D. G. 2007. Clustal W and Clustal X version 2.0. Bioinformatics 23, 2947-2948. https://doi.org/10.1093/bioinformatics/btm404
  11. Lozupone, C. A. and Knight, R. 2007. Global patterns in bacterial diversity. Proc Natl Acad Sci USA 104, 11436-11440. https://doi.org/10.1073/pnas.0611525104
  12. Martinac, B., Saimi, Y. and Kung, C. 2008. Ion channels in microbes. Physiol Rev 88, 1449-1490. https://doi.org/10.1152/physrev.00005.2008
  13. Muyzer, G., De Waal, E. C. and Uitterlinden, A. G. 1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. App Environ Microbiol 59, 695-700.
  14. Muyzer, G. 1999. DGGE/TGGE a method for identifying genes from natural ecosystems. Curr Opin Microbiol 2, 317-322. https://doi.org/10.1016/S1369-5274(99)80055-1
  15. Rasiah, I. A., Wong, L., Anderson, S. A. and Sissons, C. H. 2005. Variation in bacterial DGGE patterns from human saliva: over time, between individuals and in corresponding dental plaque microcosms. Arch Oral Biol 50, 779-787. https://doi.org/10.1016/j.archoralbio.2005.02.001
  16. Sakami, T. 2008. Seasonal and spatial variation of bacterial community structure in river-mouth areas of Gokasho Bay, Japan. Microbes Environ 23, 277-284. https://doi.org/10.1264/jsme2.ME08513
  17. Taniguchi, A. and Hamasaki, K. 2008. Community structures of actively growing bacteria shift along a north-south transect in the western North Pacific. Environ Microbiol 10, 1007-1017. https://doi.org/10.1111/j.1462-2920.2007.01521.x
  18. Tillett, D. and Neilan, B. A. 2000. Xanthogenate nucleic acid isolation from cultured and environmental cyanobacteria. J Phycol 36, 251-258. https://doi.org/10.1046/j.1529-8817.2000.99079.x
  19. Van der Gucht, K., Cottenie, K., Muylaert, K., Vloemans, N., Cousin, S., Declerck, S., Jeppesen, E., Conde-Porcuna, J. M., Schwenk, K., Zwart, G., Degans, H., Vyverman, W. and De Meester, L. 2007. The power of species sorting: Local factors drive bacterial community composition over a wide range of spatial scales. Proc Natl Acad Sci USA 104, 20404-20409. https://doi.org/10.1073/pnas.0707200104
  20. Von Sigler, W., Miniaci, C. and Zeyer, J. 2004. Electrophoresis time impacts the denaturing gradient gel electrophoresis-based assessment of bacterial community structure. J Microbiol Methods 57, 17-22. https://doi.org/10.1016/j.mimet.2003.11.011
  21. Wu, Q. L., Zwart, G., Schauer, M., Agterveld, K. M. P. and Hahn, M. W. 2006. Bacterioplankton community composition along a salinity gradient of sixteen high-mountain lakes located on the Tibetan plateau, China. Appl Environ Microbiol 72, 5478-5485. https://doi.org/10.1128/AEM.00767-06
  22. Yong, J. J., Park, S. J., Kim, H. J. and Rhee, S. K. 2007. Glaciecola agarilytica sp. nov., an agar-digesting marine bacterium from the East Sea, Korea. Int J Syst Evol Microbiol 57, 951-953. https://doi.org/10.1099/ijs.0.64723-0
  23. Zhang, X. Y., Zhang, Y. J., Yu, Y., Li, H. J., Gao, Z. M., Chen, X. L., Chen, B., Zhang, Y. Z. 2010. Neptunomonas antarctica sp. nov., isolated from marine sediment. Int J Syst Evol Microbiol 60, 1958-1961. https://doi.org/10.1099/ijs.0.017756-0