DOI QR코드

DOI QR Code

Biological Characteristics and Tissue Structure of a Crustose Coralline Lithophyllum Alga

해조류 무절산호조 혹돌잎의 생물학적 특성 및 조직구조

  • Kang, Ji-Young (Department of Biotechnology, Pukyong National University) ;
  • Benliro, Ianthe Marie P. (KOICA-PKNU International Graduate Program of Fisheries Science, Pukyong National University) ;
  • Lee, Ik-Joon (Department of Biotechnology, Pukyong National University) ;
  • Choi, Ji-Young (Department of Biotechnology, Pukyong National University) ;
  • Joo, Jin (Department of Applied Chemistry, Kyungpook National University) ;
  • Choi, Yoo Seong (Department of Chemical Engineering, Chungnam National University) ;
  • Hwang, Dong Soo (Postech Ocean Science & Technology Institute, Pohang University of Science & Technology) ;
  • Hong, Yong-Ki (Department of Biotechnology, Pukyong National University)
  • 강지영 (부경대학교 생물공학과) ;
  • ;
  • 이익준 (부경대학교 생물공학과) ;
  • 최지영 (부경대학교 생물공학과) ;
  • 주진 (경북대학교 응용화학과) ;
  • 최유성 (충남대학교 화학공학과) ;
  • 황동수 (포항 공과대학교 해양대학원) ;
  • 홍용기 (부경대학교 생물공학과)
  • Received : 2013.01.24
  • Accepted : 2013.03.11
  • Published : 2013.03.30

Abstract

The disappearance of seaweed flora in some rocky areas, which is known as algal whitening, barren ground, coralline flats, or deforested areas, is associated with some species of coralline algae. To determine the biological characteristics of a representative species of crustose coralline alga, the 18S rDNA gene was sequenced to identify the genus Lithophyllum. According to its morphological and distributional characteristics, it was deduced to be L. yessoense. Viability was measured using triphenyl tetrazolium chloride and showed high viability from December to February. Culture conditions of $16^{\circ}C$, a 16 hr light, 8 hr dark cycle, and 30 ${\mu}E/m^2/s$ light intensity were optimal for maintaining the viability of the alga for up to five days. Included in the fatty acids was 9.7% ${\omega}$-3 eicosapentaenoic acid. An electron microscopy scan of the surface structure revealed round craters about 3.6 ${\mu}m$ in diameter, which were covered with rough, irregular, and angular polygon-shaped structures about 1.0 to 3.7 ${\mu}m$ in size. Based on the composition and structure found in our study, biomimetic coralline alga might become an environmentally friendly antifouling material against the attachment of soft foulants.

연안 암반지역에서 해조류 군락의 소실 즉 백화 혹은 갯녹음현상은 산호조류와 관련성이 있다. 대표적인 무절산호조의 생물학적 특성을 파악하기 위하여 18S rDNA 유전자를 분석한 결과 혹돌잎(Lithophyllum) 속에 속하는 것을 확인하였고 그 형태적 특성으로 보아 L. yessoense 종인 것으로 유추된다. Triphenyl tetrazolium chloride로서 활력을 측정한 결과 12월에서 2월 사이가 가장 높았으며, 조직 활력을 유지하기 위하여는 $16^{\circ}C$, 16:8 시간 명암 광주기, 30 ${\mu}E/m^2/s$ 광도에서 5일간 최적상태를 보였다. 지방산 조성에서는 EPA가 가장 많은 고도불포화지방산으로서 9.7%를 차지하고 있다. 주사형전자현미경에 의한 표면구조를 보면 평균 3.6 ${\mu}m$ 직경의 둥근 함몰 분화구 모양을 이루며 그 위에 1.0 내지 3.7 ${\mu}m$의 비정형 다각형 구조물들이 덮여져 있다. 이 같은 조성과 구조를 바탕으로 한 생체모방 산호조는 해조류 등에 대한 환경친화적 방오소재로서 활용되어질 수도 있을 것이다.

Keywords

References

  1. Adey, W. H. 1998. Coral reefs: algal structured and mediated ecosystems in shallow, turbulent, alkaline waters. J Phycol 34, 393-406. https://doi.org/10.1046/j.1529-8817.1998.340393.x
  2. Agateuma, Y., Mateuyama, K., Nakata, A., Kawai, T. and Nishikawa, N. 1997. Marine algal succession on coralline flats after removal of sea urchins in Suttsu bay on the Japan Sea coast of Hokkaido, Japan. Nippon Suisan Gakkaishi 63, 672-680. https://doi.org/10.2331/suisan.63.672
  3. AOAC. 2000. Official Methods of Analysis. Vol. II, 17th ed. Association of Official Analytical Chemists, Washington, D.C., USA.
  4. Bird, C. J., Rice, E. L., Murphy, C. A. and Ragan, M. A. 1992. Phylogenetic relationships in the Gracilariales (Rhodophyta) as determined by 18S rDNA sequences. Phycologia 31, 510-522. https://doi.org/10.2216/i0031-8884-31-6-510.1
  5. Bittner, L., Payri, C. E., Maneveldt, G. W., Couloux, A., Cruaud, C., de Riviers, B. and Le Gall, L. 2011. Evolutionary history of the Corallinales (Corallinophycidae, Rhodophyta) inferred from nuclear, plastidial and mitochondrial genomes. Mol Phylogenet Evol 61, 697-713. https://doi.org/10.1016/j.ympev.2011.07.019
  6. Guiry, M. D. and Guiry, G. M. 2013. AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. http://www.algaebase.org; searched on 22 January 2013.
  7. Hong, Y. K., Kim, S. D., Polne-Fuller, M. and Gibor, A. 1995. DNA extraction conditions from Porphyra perforata using LiCl. J Appl Phycol 7, 101-107. https://doi.org/10.1007/BF00693055
  8. Johnson, C. R. and Mann, K. H. 1986. The crustose coralline alga, Phymatolithon Foslie, inhibits the overgrowth of seaweeds without relying on herbivores. J Exp Mar Biol Ecol 96, 127-146. https://doi.org/10.1016/0022-0981(86)90238-8
  9. Kim, J. H. 2000. Taxonomy of the Corallinales, Rhodophyta, in Korea. Ph.D. dissertation, Seoul National University, Seoul, Korea.
  10. Kim, M. J., Choi, J. S., Kang, S. E., Cho, J. Y., Jin, H. J., Chun, B. S. and Hong, Y. K. 2004. Multiple allelopathic activity of the crustose coralline alga Lithophyllum yessoense against settlement and germination of seaweed spores. J Appl Phycol 16, 175-179. https://doi.org/10.1023/B:JAPH.0000048497.62774.38
  11. Kitamura, H., Kitahara, S. and Koh, H. B. 1993. The induction of larval settlement and metamorphosis of two sea urchins, Pseudocentrotus depressus and Anthocidaris crassispina, by free fatty acids extracted from the coralline red algae Corallina pilulifera. Mar Biol 115, 387-392. https://doi.org/10.1007/BF00349836
  12. Kumar, S., Tamura, K. and Nei, M. 2004. MEGA3: integrated software for molecular evolutionary genetic analysis and sequence alignment. Brief Bioinform 5, 150-163. https://doi.org/10.1093/bib/5.2.150
  13. Littler, M. M. 1972. The crustose Corallinaceae. Oceanogr Mar Biol Annu Rev 10, 311-347.
  14. Luyen, Q. H., Cho, J. Y., Choi, J. S., Kang, J. Y., Park, N. G. and Hong, Y. K. 2009. Isolation of algal spore lytic C17 fatty acid from the crustose coralline seaweed Lithophyllum yessoense. J Appl Phycol 21, 423-427. https://doi.org/10.1007/s10811-008-9387-4
  15. Masaki, T., Fujita, D. and Hagen, N. T. 1984. The surface ultrastructure and epithallium shedding of crustose coralline algae in an Isoyake area of southwestern Hokkaido, Japan. Hydrobiologia 116/117, 218-223. https://doi.org/10.1007/BF00027669
  16. Ohsawa, N., Ogata, Y., Okada, N. and Itoh, N. 2001. Physiological function of bromoperoxidase in the red marine alga, Corallina pilulifera: production of bromoform as an allelochemical and the simultaneous elimination of hydrogen peroxide. Phytochemistry 58, 683-692. https://doi.org/10.1016/S0031-9422(01)00259-X
  17. Park, S. M., Kang, S. E., Choi, J. S., Cho, J. Y., Yoon, S. J., Ahn, D. H. and Hong, Y. K. 2006. Viability assay of coralline algae using triphenyltetrazolium chloride. Fish Sci 72, 912-914. https://doi.org/10.1111/j.1444-2906.2006.01237.x
  18. Roberts, R. D., Kaspar, H. F. and Barker, R. J. 2004. Settlement of abalone larvae in response to five species of coralline algae. J Shellfish Res 23, 975-987.
  19. Saito, N. and Nei, M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic tree. Mol Biol Evol 4, 406-425.
  20. Steneck, R. S. 1986. The ecology of coralline algal crusts: convergent patterns and adaptive strategies. Annu Rev Ecol Syst 17, 273-303. https://doi.org/10.1146/annurev.es.17.110186.001421
  21. Suzuki, Y., Takabayashi, T., Kawaguchi, T. and Matsunaga, K. 1998. Isolation of an allelophatic substance from the crustose coralline algae, Lithophyllum spp., and its effect on the brown alga, Laminaria religiosa Miyabe (Phaeophyta). J Exp Mar Biol Ecol 225, 69-77. https://doi.org/10.1016/S0022-0981(97)00208-6
  22. Tokuda, H., Kawashima, S., Ohno, M. and Ogawa, H. 1994. Seaweeds of Japan. Midori Shobo Co., Tokyo, Japan.
  23. Whalan, S., Webster, N. S., Negri, A. P. 2012. Crustose coralline algae and a cnidarian neuropeptide trigger larval settlement in two coral reef sponges. PLoS ONE 7, e30386. https://doi.org/10.1371/journal.pone.0030386