DOI QR코드

DOI QR Code

A study on the properties of the finite-dimensional approximation of an r-fold Wiener Process

r-fold Wiener process에 대한 유한근사함수의 특성에 관한 연구

  • Received : 2012.12.27
  • Accepted : 2013.02.23
  • Published : 2013.03.30

Abstract

Because the r-fold Wiener process is truly infinitely dimensional and a computer can only handle finitely dimensional subspaces, we study in this paper the basic properties of the m-dimensional approximation function of the r-fold Wiener process.

r-fold Wiener process는 실질적으로 infinite dimension이고, 컴퓨터는 finitely dimensional subspace만 취급할 수 있기 때문에 f-fold Wiener process는 컴퓨터로 구현될 수 없다. 따라서 본 논문에서는 r-fold Wiener process의 m-dimensional approximation 함수의 특성에 대해 연구한다.

Keywords

References

  1. S. Choi and B. Hong, "An Effor of Simpson's Quadrature in the Average Case Setting," J. of Korean Math. Soc. 33 (1996), 235-247.
  2. H. H. Kuo, "Gaussian Measures in Banach Spaces," Lecture Notes in Mathematics 463, Springer-Verlag, Berlin, 1975.
  3. L. Plaskota, "Average Approximation and Integration in the Wiener Space with Noisy Data," J. of Complexity 8 (1992), 301-323. https://doi.org/10.1016/0885-064X(92)90028-A
  4. K. Ritter, G. W. Wasilkowski, and H. Wozniakowski, "On Multivariage Integration for Stochastic Processes," International Series of Numerical Mathematics 112 (1993), 331-347.
  5. J. F. Traub, G. W. Wasilkowski, and H. Wozniakowski, "Information-Based Complexity," Academic Press, New York, 1988.