References
- Henschke CI, Yankelevitz DF, Mirtcheva R, McGuinness G, McCauley D, Miettinen OS; ELCAP Group. CT screening for lung cancer: frequency and significance of part-solid and nonsolid nodules. AJR Am J Roentgenol 2002;178:1053-1057 https://doi.org/10.2214/ajr.178.5.1781053
- Park CM, Goo JM, Lee HJ, Lee CH, Chun EJ, Im JG. Nodular ground-glass opacity at thin-section CT: histologic correlation and evaluation of change at follow-up. Radiographics 2007;27:391-408 https://doi.org/10.1148/rg.272065061
- Lee HJ, Goo JM, Lee CH, Park CM, Kim KG, Park EA, et al. Predictive CT findings of malignancy in ground-glass nodules on thin-section chest CT: the effects on radiologist performance. Eur Radiol 2009;19:552-560 https://doi.org/10.1007/s00330-008-1188-2
- Kim HY, Shim YM, Lee KS, Han J, Yi CA, Kim YK. Persistent pulmonary nodular ground-glass opacity at thin-section CT: histopathologic comparisons. Radiology 2007;245:267-275 https://doi.org/10.1148/radiol.2451061682
- Tsunezuka Y, Shimizu Y, Tanaka N, Takayanagi T, Kawano M. Positron emission tomography in relation to Noguchi's classification for diagnosis of peripheral non-small-cell lung cancer 2 cm or less in size. World J Surg 2007;31:314-317 https://doi.org/10.1007/s00268-006-0475-9
- de Hoop B, Gietema H, van de Vorst S, Murphy K, van Klaveren RJ, Prokop M. Pulmonary ground-glass nodules: increase in mass as an early indicator of growth. Radiology 2010;255:199-206 https://doi.org/10.1148/radiol.09090571
- Goo JM. A computer-aided diagnosis for evaluating lung nodules on chest CT: the current status and perspective. Korean J Radiol 2011;12:145-155 https://doi.org/10.3348/kjr.2011.12.2.145
- Oda S, Awai K, Murao K, Ozawa A, Yanaga Y, Kawanaka K, et al. Computer-aided volumetry of pulmonary nodules exhibiting ground-glass opacity at MDCT. AJR Am J Roentgenol 2010;194:398-406 https://doi.org/10.2214/AJR.09.2583
- Park CM, Goo JM, Lee HJ, Kim KG, Kang MJ, Shin YH. Persistent pure ground-glass nodules in the lung: interscan variability of semiautomated volume and attenuation measurements. AJR Am J Roentgenol 2010;195:W408-W414 https://doi.org/10.2214/AJR.09.4157
- de Hoop B, Gietema H, van Ginneken B, Zanen P, Groenewegen G, Prokop M. A comparison of six software packages for evaluation of solid lung nodules using semiautomated volumetry: what is the minimum increase in size to detect growth in repeated CT examinations. Eur Radiol 2009;19:800-808 https://doi.org/10.1007/s00330-008-1229-x
- Kakinuma R, Kodama K, Yamada K, Yokoyama A, Adachi S, Mori K, et al. Performance evaluation of 4 measuring methods of ground-glass opacities for predicting the 5-year relapse-free survival of patients with peripheral nonsmall cell lung cancer: a multicenter study. J Comput Assist Tomogr 2008;32:792-798 https://doi.org/10.1097/RCT.0b013e31815688ae
- Wang Y, van Klaveren RJ, van der Zaag-Loonen HJ, de Bock GH, Gietema HA, Xu DM, et al. Effect of nodule characteristics on variability of semiautomated volume measurements in pulmonary nodules detected in a lung cancer screening program. Radiology 2008;248:625-631 https://doi.org/10.1148/radiol.2482070957
- Gavrielides MA, Kinnard LM, Myers KJ, Petrick N. Noncalcified lung nodules: volumetric assessment with thoracic CT. Radiology 2009;251:26-37 https://doi.org/10.1148/radiol.2511071897
- Kostis WJ, Reeves AP, Yankelevitz DF, Henschke CI. Threedimensional segmentation and growth-rate estimation of small pulmonary nodules in helical CT images. IEEE Trans Med Imaging 2003;22:1259-1274 https://doi.org/10.1109/TMI.2003.817785
- Das M, Ley-Zaporozhan J, Gietema HA, Czech A, Mühlenbruch G, Mahnken AH, et al. Accuracy of automated volumetry of pulmonary nodules across different multislice CT scanners. Eur Radiol 2007;17:1979-1984 https://doi.org/10.1007/s00330-006-0562-1
- Petrou M, Quint LE, Nan B, Baker LH. Pulmonary nodule volumetric measurement variability as a function of CT slice thickness and nodule morphology. AJR Am J Roentgenol 2007;188:306-312 https://doi.org/10.2214/AJR.05.1063
- Godoy MC, Naidich DP. Subsolid pulmonary nodules and the spectrum of peripheral adenocarcinomas of the lung: recommended interim guidelines for assessment and management. Radiology 2009;253:606-622 https://doi.org/10.1148/radiol.2533090179
- Travis WD, Brambilla E, Noguchi M, Nicholson AG, Geisinger KR, Yatabe Y, et al. International association for the study of lung cancer/american thoracic society/european respiratory society international multidisciplinary classification of lung adenocarcinoma. J Thorac Oncol 2011;6:244-285 https://doi.org/10.1097/JTO.0b013e318206a221
- Warfield SK, Zou KH, Wells WM. Simultaneous truth and performance level estimation (STAPLE): an algorithm for the validation of image segmentation. IEEE Trans Med Imaging 2004;23:903-921 https://doi.org/10.1109/TMI.2004.828354
- Deeley MA, Chen A, Datteri R, Noble JH, Cmelak AJ, Donnelly EF, et al. Comparison of manual and automatic segmentation methods for brain structures in the presence of spaceoccupying lesions: a multi-expert study. Phys Med Biol 2011;56:4557-4577 https://doi.org/10.1088/0031-9155/56/14/021
Cited by
- Differentiating between Subsolid and Solid Pulmonary Nodules at CT: Inter- and Intraobserver Agreement between Experienced Thoracic Radiologists vol.2015, pp.None, 2013, https://doi.org/10.1148/radiol.2015150714
- A Computer-Aided Diagnosis System Using Artificial Intelligence for the Diagnosis and Characterization of Thyroid Nodules on Ultrasound: Initial Clinical Assessment vol.27, pp.4, 2013, https://doi.org/10.1089/thy.2016.0372
- Quality of Radiomic Features in Glioblastoma Multiforme: Impact of Semi-Automated Tumor Segmentation Software vol.18, pp.3, 2017, https://doi.org/10.3348/kjr.2017.18.3.498
- Can spectral computed tomography imaging improve the differentiation between malignant and benign pulmonary lesions manifesting as solitary pure ground glass, mixed ground glass, and solid nodules? vol.10, pp.2, 2013, https://doi.org/10.1111/1759-7714.12937
- Imaging Informatics: A New Horizon for Radiology in the Era of Artificial Intelligence, Big Data, and Data Science vol.80, pp.2, 2013, https://doi.org/10.3348/jksr.2019.80.2.176
- Automatic thyroid nodule recognition and diagnosis in ultrasound imaging with the YOLOv2 neural network vol.17, pp.None, 2013, https://doi.org/10.1186/s12957-019-1558-z