DOI QR코드

DOI QR Code

True Progression versus Pseudoprogression in the Treatment of Glioblastomas: A Comparison Study of Normalized Cerebral Blood Volume and Apparent Diffusion Coefficient by Histogram Analysis

  • Song, Yong Sub (Department of Radiology, Seoul National University College of Medicine) ;
  • Choi, Seung Hong (Department of Radiology, Seoul National University College of Medicine) ;
  • Park, Chul-Kee (Department of Neurosurgery, Seoul National University College of Medicine) ;
  • Yi, Kyung Sik (Department of Radiology, Seoul National University College of Medicine) ;
  • Lee, Woong Jae (Department of Radiology, Seoul National University College of Medicine) ;
  • Yun, Tae Jin (Department of Radiology, Seoul National University College of Medicine) ;
  • Kim, Tae Min (Department of Internal Medicine, Seoul National University College of Medicine) ;
  • Lee, Se-Hoon (Department of Internal Medicine, Seoul National University College of Medicine) ;
  • Kim, Ji-Hoon (Department of Radiology, Seoul National University College of Medicine) ;
  • Sohn, Chul-Ho (Department of Radiology, Seoul National University College of Medicine) ;
  • Park, Sung-Hye (Department of Pathology, Seoul National University College of Medicine) ;
  • Kim, Il Han (Department of Radiation Oncology, Seoul National University College of Medicine) ;
  • Jahng, Geon-Ho (Department of Radiology, School of Medicine of Kyung Hee University) ;
  • Chang, Kee-Hyun (Department of Radiology, Seoul National University College of Medicine)
  • Received : 2012.12.16
  • Accepted : 2013.04.04
  • Published : 2013.07.01

Abstract

Objective: The purpose of this study was to differentiate true progression from pseudoprogression of glioblastomas treated with concurrent chemoradiotherapy (CCRT) with temozolomide (TMZ) by using histogram analysis of apparent diffusion coefficient (ADC) and normalized cerebral blood volume (nCBV) maps. Materials and Methods: Twenty patients with histopathologically proven glioblastoma who had received CCRT with TMZ underwent perfusion-weighted imaging and diffusion-weighted imaging (b = 0, 1000 $sec/mm^2$). The corresponding nCBV and ADC maps for the newly visible, entirely enhancing lesions were calculated after the completion of CCRT with TMZ. Two observers independently measured the histogram parameters of the nCBV and ADC maps. The histogram parameters between the true progression group (n = 10) and the pseudoprogression group (n = 10) were compared by use of an unpaired Student's t test and subsequent multivariable stepwise logistic regression analysis to determine the best predictors for the differential diagnosis between the two groups. Receiver operating characteristic analysis was employed to determine the best cutoff values for the histogram parameters that proved to be significant predictors for differentiating true progression from pseudoprogression. Intraclass correlation coefficient was used to determine the level of inter-observer reliability for the histogram parameters. Results: The 5th percentile value (C5) of the cumulative ADC histograms was a significant predictor for the differential diagnosis between true progression and pseudoprogression (p = 0.044 for observer 1; p = 0.011 for observer 2). Optimal cutoff values of $892{\times}10^{-6}mm^2/sec$ for observer 1 and $907{\times}10^{-6}mm^2/sec$ for observer 2 could help differentiate between the two groups with a sensitivity of 90% and 80%, respectively, a specificity of 90% and 80%, respectively, and an area under the curve of 0.880 and 0.840, respectively. There was no other significant differentiating parameter on the nCBV histograms. Inter-observer reliability was excellent or good for all histogram parameters (intraclass correlation coefficient range: 0.70-0.99). Conclusion: The C5 of the cumulative ADC histogram can be a promising parameter for the differentiation of true progression from pseudoprogression of newly visible, entirely enhancing lesions after CCRT with TMZ for glioblastomas.

Keywords

References

  1. Jeon HJ, Kong DS, Park KB, Lee JI, Park K, Kim JH, et al. Clinical outcome of concomitant chemoradiotherapy followed by adjuvant temozolomide therapy for glioblastaomas: singlecenter experience. Clin Neurol Neurosurg 2009;111:679-682 https://doi.org/10.1016/j.clineuro.2009.06.013
  2. Erpolat OP, Akmansu M, Goksel F, Bora H, Yaman E, Büyükberber S. Outcome of newly diagnosed glioblastoma patients treated by radiotherapy plus concomitant and adjuvant temozolomide: a long-term analysis. Tumori 2009;95:191-197
  3. Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 2005;352:987-996 https://doi.org/10.1056/NEJMoa043330
  4. Macdonald DR, Cascino TL, Schold SC Jr, Cairncross JG. Response criteria for phase II studies of supratentorial malignant glioma. J Clin Oncol 1990;8:1277-1280 https://doi.org/10.1200/JCO.1990.8.7.1277
  5. Taal W, Brandsma D, de Bruin HG, Bromberg JE, Swaak- Kragten AT, Smitt PA, et al. Incidence of early pseudoprogression in a cohort of malignant glioma patients treated with chemoirradiation with temozolomide. Cancer 2008;113:405-410 https://doi.org/10.1002/cncr.23562
  6. Brandsma D, Stalpers L, Taal W, Sminia P, van den Bent MJ. Clinical features, mechanisms, and management of pseudoprogression in malignant gliomas. Lancet Oncol 2008;9:453-461 https://doi.org/10.1016/S1470-2045(08)70125-6
  7. Chaskis C, Neyns B, Michotte A, De Ridder M, Everaert H. Pseudoprogression after radiotherapy with concurrent temozolomide for high-grade glioma: clinical observations and working recommendations. Surg Neurol 2009;72:423-428 https://doi.org/10.1016/j.surneu.2008.09.023
  8. Chamberlain MC. Pseudoprogression in glioblastoma. J Clin Oncol 2008;26:4359; author reply 4359-4360
  9. Dooms GC, Hecht S, Brant-Zawadzki M, Berthiaume Y, Norman D, Newton TH. Brain radiation lesions: MR imaging. Radiology 1986;158:149-155 https://doi.org/10.1148/radiology.158.1.3940373
  10. Morris JG, Grattan-Smith P, Panegyres PK, O'Neill P, Soo YS, Langlands AO. Delayed cerebral radiation necrosis. Q J Med 1994;87:119-129
  11. Wen PY, Macdonald DR, Reardon DA, Cloughesy TF, Sorensen AG, Galanis E, et al. Updated response assessment criteria for high-grade gliomas: response assessment in neuro-oncology working group. J Clin Oncol 2010;28:1963-1972 https://doi.org/10.1200/JCO.2009.26.3541
  12. Hein PA, Eskey CJ, Dunn JF, Hug EB. Diffusion-weighted imaging in the follow-up of treated high-grade gliomas: tumor recurrence versus radiation injury. AJNR Am J Neuroradiol 2004;25:201-209
  13. Asao C, Korogi Y, Kitajima M, Hirai T, Baba Y, Makino K, et al. Diffusion-weighted imaging of radiation-induced brain injury for differentiation from tumor recurrence. AJNR Am J Neuroradiol 2005;26:1455-1460
  14. Matsusue E, Fink JR, Rockhill JK, Ogawa T, Maravilla KR. Distinction between glioma progression and post-radiation change by combined physiologic MR imaging. Neuroradiology 2010;52:297-306 https://doi.org/10.1007/s00234-009-0613-9
  15. Barajas RF Jr, Chang JS, Segal MR, Parsa AT, McDermott MW, Berger MS, et al. Differentiation of recurrent glioblastoma multiforme from radiation necrosis after external beam radiation therapy with dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging. Radiology 2009;253:486-496 https://doi.org/10.1148/radiol.2532090007
  16. Hu LS, Baxter LC, Smith KA, Feuerstein BG, Karis JP, Eschbacher JM, et al. Relative cerebral blood volume values to differentiate high-grade glioma recurrence from posttreatment radiation effect: direct correlation between image-guided tissue histopathology and localized dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging measurements. AJNR Am J Neuroradiol 2009;30:552-558 https://doi.org/10.3174/ajnr.A1377
  17. Kong DS, Kim ST, Kim EH, Lim DH, Kim WS, Suh YL, et al. Diagnostic dilemma of pseudoprogression in the treatment of newly diagnosed glioblastomas: the role of assessing relative cerebral blood flow volume and oxygen-6-methylguanine-DNA methyltransferase promoter methylation status. AJNR Am J Neuroradiol 2011;32:382-387 https://doi.org/10.3174/ajnr.A2286
  18. Zeng QS, Li CF, Liu H, Zhen JH, Feng DC. Distinction between recurrent glioma and radiation injury using magnetic resonance spectroscopy in combination with diffusionweighted imaging. Int J Radiat Oncol Biol Phys 2007;68:151-158 https://doi.org/10.1016/j.ijrobp.2006.12.001
  19. Sugahara T, Korogi Y, Tomiguchi S, Shigematsu Y, Ikushima I, Kira T, et al. Posttherapeutic intraaxial brain tumor: the value of perfusion-sensitive contrast-enhanced MR imaging for differentiating tumor recurrence from nonneoplastic contrastenhancing tissue. AJNR Am J Neuroradiol 2000;21:901-909
  20. Pope WB, Lai A, Mehta R, Kim HJ, Qiao J, Young JR, et al. Apparent diffusion coefficient histogram analysis stratifies progression-free survival in newly diagnosed bevacizumabtreated glioblastoma. AJNR Am J Neuroradiol 2011;32:882-889 https://doi.org/10.3174/ajnr.A2385
  21. Pope WB, Kim HJ, Huo J, Alger J, Brown MS, Gjertson D, et al. Recurrent glioblastoma multiforme: ADC histogram analysis predicts response to bevacizumab treatment. Radiology 2009;252:182-189 https://doi.org/10.1148/radiol.2521081534
  22. Kim HS, Kim JH, Kim SH, Cho KG, Kim SY. Posttreatment high-grade glioma: usefulness of peak height position with semiquantitative MR perfusion histogram analysis in an entire contrast-enhanced lesion for predicting volume fraction of recurrence. Radiology 2010;256:906-915 https://doi.org/10.1148/radiol.10091461
  23. Baek HJ, Kim HS, Kim N, Choi YJ, Kim YJ. Percent change of perfusion skewness and kurtosis: a potential imaging biomarker for early treatment response in patients with newly diagnosed glioblastomas. Radiology 2012;264:834-843 https://doi.org/10.1148/radiol.12112120
  24. Kang Y, Choi SH, Kim YJ, Kim KG, Sohn CH, Kim JH, et al. Gliomas: histogram analysis of apparent diffusion coefficient maps with standard- or high-b-value diffusion-weighted MR imaging--correlation with tumor grade. Radiology 2011;261:882-890 https://doi.org/10.1148/radiol.11110686
  25. Rosen BR, Belliveau JW, Vevea JM, Brady TJ. Perfusion imaging with NMR contrast agents. Magn Reson Med 1990;14:249-265 https://doi.org/10.1002/mrm.1910140211
  26. Ostergaard L, Weisskoff RM, Chesler DA, Gyldensted C, Rosen BR. High resolution measurement of cerebral blood flow using intravascular tracer bolus passages. Part I: mathematical approach and statistical analysis. Magn Reson Med 1996;36:715-725 https://doi.org/10.1002/mrm.1910360510
  27. Boxerman JL, Schmainda KM, Weisskoff RM. Relative cerebral blood volume maps corrected for contrast agent extravasation significantly correlate with glioma tumor grade, whereas uncorrected maps do not. AJNR Am J Neuroradiol 2006;27:859-867
  28. Wetzel SG, Cha S, Johnson G, Lee P, Law M, Kasow DL, et al. Relative cerebral blood volume measurements in intracranial mass lesions: interobserver and intraobserver reproducibility study. Radiology 2002;224:797-803 https://doi.org/10.1148/radiol.2243011014
  29. Bjornerud A. The ICE software package: direct co-registration of anatomical and functional datasets using DICOM image geometry information. Proc Hum Brain Mapping 2003;19:1018p
  30. Tozer DJ, Jäger HR, Danchaivijitr N, Benton CE, Tofts PS, Rees JH, et al. Apparent diffusion coefficient histograms may predict low-grade glioma subtype. NMR Biomed 2007;20:49-57 https://doi.org/10.1002/nbm.1091
  31. Padhani AR, Liu G, Koh DM, Chenevert TL, Thoeny HC, Takahara T, et al. Diffusion-weighted magnetic resonance imaging as a cancer biomarker: consensus and recommendations. Neoplasia 2009;11:102-125
  32. Sugahara T, Korogi Y, Kochi M, Ikushima I, Shigematu Y, Hirai T, et al. Usefulness of diffusion-weighted MRI with echoplanar technique in the evaluation of cellularity in gliomas. J Magn Reson Imaging 1999;9:53-60 https://doi.org/10.1002/(SICI)1522-2586(199901)9:1<53::AID-JMRI7>3.0.CO;2-2
  33. de Wit MC, de Bruin HG, Eijkenboom W, Sillevis Smitt PA, van den Bent MJ. Immediate post-radiotherapy changes in malignant glioma can mimic tumor progression. Neurology 2004;63:535-537 https://doi.org/10.1212/01.WNL.0000133398.11870.9A
  34. Oh BC, Pagnini PG, Wang MY, Liu CY, Kim PE, Yu C, et al. Stereotactic radiosurgery: adjacent tissue injury and response after high-dose single fraction radiation: Part I--Histology, imaging, and molecular events. Neurosurgery 2007;60:31-44; discussion 44-45 https://doi.org/10.1227/01.NEU.0000249191.23162.D2
  35. Wesseling P, Ruiter DJ, Burger PC. Angiogenesis in brain tumors; pathobiological and clinical aspects. J Neurooncol 1997;32:253-265 https://doi.org/10.1023/A:1005746320099
  36. Cha S, Knopp EA, Johnson G, Litt A, Glass J, Gruber ML, et al. Dynamic contrast-enhanced T2-weighted MR imaging of recurrent malignant gliomas treated with thalidomide and carboplatin. AJNR Am J Neuroradiol 2000;21:881-890
  37. Heiland S, Benner T, Debus J, Rempp K, Reith W, Sartor K. Simultaneous assessment of cerebral hemodynamics and contrast agent uptake in lesions with disrupted blood-brainbarrier. Magn Reson Imaging 1999;17:21-27 https://doi.org/10.1016/S0730-725X(98)00149-0
  38. Spiegelmann R, Friedman WA, Bova FJ, Theele DP, Mickle JP. LINAC radiosurgery: an animal model. J Neurosurg 1993;78:638-644 https://doi.org/10.3171/jns.1993.78.4.0638
  39. Minamikawa S, Kono K, Nakayama K, Yokote H, Tashiro T, Nishio A, et al. Glucocorticoid treatment of brain tumor patients: changes of apparent diffusion coefficient values measured by MR diffusion imaging. Neuroradiology 2004;46:805-811 https://doi.org/10.1007/s00234-004-1268-1

Cited by

  1. Use of high-resolution volumetric MR spectroscopic imaging in assessing treatment response of glioblastoma to an HDAC inhibitor. vol.203, pp.2, 2014, https://doi.org/10.2214/ajr.14.12518
  2. Perfusion Magnetic Resonance Imaging: A Comprehensive Update on Principles and Techniques vol.15, pp.5, 2013, https://doi.org/10.3348/kjr.2014.15.5.554
  3. Prognosis Prediction of Measurable Enhancing Lesion after Completion of Standard Concomitant Chemoradiotherapy and Adjuvant Temozolomide in Glioblastoma Patients: Application of Dynamic Susceptibility vol.9, pp.11, 2013, https://doi.org/10.1371/journal.pone.0113587
  4. Improving tumour heterogeneity MRI assessment with histograms vol.111, pp.12, 2013, https://doi.org/10.1038/bjc.2014.512
  5. Prediction of Response to Concurrent Chemoradiotherapy with Temozolomide in Glioblastoma: Application of Immediate Post-Operative Dynamic Susceptibility Contrast and Diffusion-Weighted MR Imaging vol.16, pp.6, 2013, https://doi.org/10.3348/kjr.2015.16.6.1341
  6. Glioblastoma Treated with Concurrent Radiation Therapy and Temozolomide Chemotherapy: Differentiation of True Progression from Pseudoprogression with Quantitative Dynamic Contrast-enhanced MR Imaging vol.274, pp.3, 2013, https://doi.org/10.1148/radiol.14132632
  7. Imaging of the Posttherapeutic Brain vol.24, pp.3, 2013, https://doi.org/10.1097/rmr.0000000000000051
  8. Relative cerebral blood volume is a potential predictive imaging biomarker of bevacizumab efficacy in recurrent glioblastoma vol.17, pp.8, 2015, https://doi.org/10.1093/neuonc/nov028
  9. Dynamic contrast enhanced T1 MRI perfusion differentiates pseudoprogression from recurrent glioblastoma vol.125, pp.1, 2015, https://doi.org/10.1007/s11060-015-1893-z
  10. Independent Poor Prognostic Factors for True Progression after Radiation Therapy and Concomitant Temozolomide in Patients with Glioblastoma: Subependymal Enhancement and Low ADC Value vol.36, pp.10, 2015, https://doi.org/10.3174/ajnr.a4401
  11. Identification of a candidate biomarker from perfusion MRI to anticipate glioblastoma progression after chemoradiation vol.26, pp.11, 2013, https://doi.org/10.1007/s00330-016-4234-5
  12. Small increases in enhancement on MRI may predict survival post radiotherapy in patients with glioblastoma vol.128, pp.1, 2013, https://doi.org/10.1007/s11060-016-2074-4
  13. DEMARCATE: Density-based magnetic resonance image clustering for assessing tumor heterogeneity in cancer vol.12, pp.None, 2013, https://doi.org/10.1016/j.nicl.2016.05.012
  14. Recent Application of Advanced MR Imaging to Predict Pseudoprogression in High-grade Glioma Patients vol.15, pp.2, 2013, https://doi.org/10.2463/mrms.rev.2015-0053
  15. Does the Reporting Quality of Diagnostic Test Accuracy Studies, as Defined by STARD 2015, Affect Citation? vol.17, pp.5, 2016, https://doi.org/10.3348/kjr.2016.17.5.706
  16. Issues to Consider in Designing Immunotherapy Clinical Trials for Glioblastoma Management vol.7, pp.8, 2013, https://doi.org/10.4236/jct.2016.78060
  17. Physiologic MRI for assessment of response to therapy and prognosis in glioblastoma vol.18, pp.4, 2016, https://doi.org/10.1093/neuonc/nov179
  18. Extended T2-IVIM model for correction of TE dependence of pseudo-diffusion volume fraction in clinical diffusion-weighted magnetic resonance imaging vol.61, pp.24, 2013, https://doi.org/10.1088/1361-6560/61/24/n667
  19. Repeatability of derived parameters from histograms following non-Gaussian diffusion modelling of diffusion-weighted imaging in a paediatric oncological cohort vol.27, pp.1, 2013, https://doi.org/10.1007/s00330-016-4318-2
  20. Diagnostic accuracy of magnetic resonance imaging techniques for treatment response evaluation in patients with high-grade glioma, a systematic review and meta-analysis vol.27, pp.10, 2013, https://doi.org/10.1007/s00330-017-4789-9
  21. Evaluation of pseudoprogression in patients with glioblastoma vol.4, pp.2, 2013, https://doi.org/10.1093/nop/npw021
  22. MRI in Glioma Immunotherapy: Evidence, Pitfalls, and Perspectives vol.2017, pp.None, 2017, https://doi.org/10.1155/2017/5813951
  23. Selection and Reporting of Statistical Methods to Assess Reliability of a Diagnostic Test: Conformity to Recommended Methods in a Peer-Reviewed Journal vol.18, pp.6, 2017, https://doi.org/10.3348/kjr.2017.18.6.888
  24. Diffusion Weighted/Tensor Imaging, Functional MRI and Perfusion Weighted Imaging in Glioblastoma—Foundations and Future vol.8, pp.None, 2017, https://doi.org/10.3389/fneur.2017.00660
  25. Feasibility and applicability of diffusion‐weighted and dynamic contrast‐enhanced magnetic resonance imaging in routine assessments of children with high‐grade gliomas vol.64, pp.2, 2013, https://doi.org/10.1002/pbc.26216
  26. Current Clinical Brain Tumor Imaging vol.81, pp.3, 2013, https://doi.org/10.1093/neuros/nyx103
  27. Comparison between the Prebolus T1 Measurement and the Fixed T1 Value in Dynamic Contrast-Enhanced MR Imaging for the Differentiation of True Progression from Pseudoprogression in Glioblastoma Treated vol.38, pp.12, 2013, https://doi.org/10.3174/ajnr.a5417
  28. Treatment-related changes in glioblastoma: a review on the controversies in response assessment criteria and the concepts of true progression, pseudoprogression, pseudoresponse and radionecrosis vol.20, pp.8, 2013, https://doi.org/10.1007/s12094-017-1816-x
  29. Diagnostic Accuracy of Centrally Restricted Diffusion in the Differentiation of Treatment-Related Necrosis from Tumor Recurrence in High-Grade Gliomas vol.39, pp.2, 2018, https://doi.org/10.3174/ajnr.a5485
  30. The value of whole lesion ADC histogram profiling to differentiate between morphologically indistinguishable ring enhancing lesions–comparison of glioblastomas and brain abscesses vol.9, pp.26, 2013, https://doi.org/10.18632/oncotarget.24454
  31. Diffusion‐weighted MRI and intravoxel incoherent motion model for diagnosis of pediatric solid abdominal tumors vol.47, pp.6, 2013, https://doi.org/10.1002/jmri.25901
  32. Magnetic Resonance Perfusion Imaging in the Diagnosis of High-Grade Glioma Progression and Treatment-Related Changes: A Systematic Review vol.8, pp.3, 2013, https://doi.org/10.4236/ojmn.2018.83024
  33. Pseudoprogression of brain tumors vol.48, pp.3, 2013, https://doi.org/10.1002/jmri.26171
  34. Incidence of Tumour Progression and Pseudoprogression in High-Grade Gliomas: a Systematic Review and Meta-Analysis vol.28, pp.3, 2018, https://doi.org/10.1007/s00062-017-0584-x
  35. Pseudoprogression of CNS metastatic disease of alveolar soft part sarcoma during anti-PDL1 treatment ☆☆ vol.13, pp.4, 2013, https://doi.org/10.1016/j.radcr.2018.05.013
  36. Differentiating between Glioblastoma and Primary CNS Lymphoma Using Combined Whole-tumor Histogram Analysis of the Normalized Cerebral Blood Volume and the Apparent Diffusion Coefficient vol.18, pp.1, 2013, https://doi.org/10.2463/mrms.mp.2017-0135
  37. Post-radiotherapy apparent diffusion coefficient (ADC) in children and young adults with high-grade gliomas and diffuse intrinsic pontine gliomas vol.36, pp.2, 2013, https://doi.org/10.1080/08880018.2019.1592267
  38. Integrated PET-MRI for Glioma Surveillance: Perfusion-Metabolism Discordance Rate and Association With Molecular Profiling vol.212, pp.4, 2013, https://doi.org/10.2214/ajr.18.20531
  39. Advanced ADC Histogram, Perfusion, and Permeability Metrics Show an Association with Survival and Pseudoprogression in Newly Diagnosed Diffuse Intrinsic Pontine Glioma: A Report from the Pediatric Bra vol.41, pp.4, 2013, https://doi.org/10.3174/ajnr.a6499
  40. Differentiation Between True Tumor Progression of Glioblastoma and Pseudoprogression Using Diffusion-Weighted Imaging and Perfusion-Weighted Imaging: Systematic Review and Meta-analysis vol.144, pp.None, 2020, https://doi.org/10.1016/j.wneu.2020.07.218
  41. Advanced Imaging Techniques for Differentiating Pseudoprogression and Tumor Recurrence After Immunotherapy for Glioblastoma vol.12, pp.None, 2021, https://doi.org/10.3389/fimmu.2021.790674
  42. Pseudoprogression versus true progression in glioblastoma patients: A multiapproach literature review. Part 2 – Radiological features and metric markers vol.159, pp.None, 2013, https://doi.org/10.1016/j.critrevonc.2021.103230
  43. Radiomics-based neural network predicts recurrence patterns in glioblastoma using dynamic susceptibility contrast-enhanced MRI vol.11, pp.1, 2013, https://doi.org/10.1038/s41598-021-89218-z
  44. A Comparison of Single- and Multiparametric MRI Models for Differentiation of Recurrent Glioblastoma from Treatment-Related Change vol.11, pp.12, 2013, https://doi.org/10.3390/diagnostics11122281