DOI QR코드

DOI QR Code

특발성 폐 섬유화증의 병인 및 최신 진단 기준

Pathogenesis and New Diagnosis Guideline of Idiopathic Pulmonary Fibrosis

  • 어수택 (순천향대학교 서울병원 호흡기-알레르기내과)
  • Uh, Soo-Taek (Department of Respiratory and Allergy Medicine, Soonchunhyang University)
  • 발행 : 2013.04.01

초록

Idiopathic pulmonary fibrosis (IPF) is a progressive and fatal fibrotic lung disease in many patients. In spite of extensive research for many decades, the exact pathogenesis of IPF is unknown. At recent, the role of alveolar epithelial cells has been focused in the initiation of IPF in terms of epithelial-mesenchymal transition, dysregulated Wnt signaling, and activation of transforming growth factor-${\beta}$ (TGF-${\beta}$). The resulting excess collagen deposition and destruction of lung architecture by myofibroblasts and fibroblastic foci leads to the development of IPF. IPF can be diagnosed by typical high resolution chest tomogram (HRCT) or by multidisciplinary discussion based on the new guideline published on 2010.

키워드

참고문헌

  1. Raghu G, Collard HR, Egan JJ, et al. An official ATS/ERS/ JRS/ALAT statement: idiopathic pulmonary fibrosis: evidencebased guidelines for diagnosis and management. Am J Respir Crit Care Med 2011;183:788-824. https://doi.org/10.1164/rccm.2009-040GL
  2. Gilani SR, Vuga LJ, Lindell KO, et al. CD28 downregulation on circulating CD4 T-cells is associated with poor prognoses of patients with idiopathic pulmonary fibrosis. PLoS One 2010;5:e8959. https://doi.org/10.1371/journal.pone.0008959
  3. Tang YW, Johnson JE, Browning PJ, et al. Herpesvirus DNA is consistently detected in lungs of patients with idiopathic pulmonary fibrosis. J Clin Microbiol 2003;41: 2633-2640. https://doi.org/10.1128/JCM.41.6.2633-2640.2003
  4. King TE Jr, Pardo A, Selman M. Idiopathic pulmonary fibrosis. Lancet 2011;378:1949-1961. https://doi.org/10.1016/S0140-6736(11)60052-4
  5. Coward WR, Saini G, Jenkins G. The pathogenesis of idiopathic pulmonary fibrosis. Ther Adv Respir Dis 2010;4: 367-388. https://doi.org/10.1177/1753465810379801
  6. Ding Q, Luckhardt T, Hecker L, et al. New insights into the pathogenesis and treatment of idiopathic pulmonary fibrosis. Drugs 2011;71:981-1001. https://doi.org/10.2165/11591490-000000000-00000
  7. Kikuchi A, Yamamoto H, Kishida S. Multiplicity of the interactions of Wnt proteins and their receptors. Cell Signal 2007;19:659-671. https://doi.org/10.1016/j.cellsig.2006.11.001
  8. Chilosi M, Poletti V, Zamo A, et al. Aberrant Wnt/betacatenin pathway activation in idiopathic pulmonary fibrosis. Am J Pathol 2003;162:1495-1502. https://doi.org/10.1016/S0002-9440(10)64282-4
  9. Jian H, Shen X, Liu I, Semenov M, He X, Wang XF. Smad3-dependent nuclear translocation of beta-catenin is required for TGF-beta1-induced proliferation of bone marrow-derived adult human mesenchymal stem cells. Genes Dev 2006;20:666-674. https://doi.org/10.1101/gad.1388806
  10. Akhmetshina A, Palumbo K, Dees C, et al. Activation of canonical Wnt signalling is required for TGF-${\beta}2$-mediated fibrosis. Nat Commun 2012;3:735. https://doi.org/10.1038/ncomms1734
  11. Keniry M, Parsons R. The role of PTEN signaling perturbations in cancer and in targeted therapy. Oncogene 2008; 27:5477-5485. https://doi.org/10.1038/onc.2008.248
  12. White ES, Atrasz RG, Hu B, et al. Negative regulation of myofibroblast differentiation by PTEN (Phosphatase and Tensin Homolog Deleted on chromosome 10). Am J Respir Crit Care Med 2006;173:112-121. https://doi.org/10.1164/rccm.200507-1058OC
  13. Xu MY, Porte J, Knox AJ, et al. Lysophosphatidic acid induces alphavbeta6 integrin-mediated TGF-beta activation via the LPA2 receptor and the small G protein G alpha(q). Am J Pathol 2009;174:1264-1279. https://doi.org/10.2353/ajpath.2009.080160
  14. Eitzman DT, McCoy RD, Zheng X, et al. Bleomycininduced pulmonary fibrosis in transgenic mice that either lack or overexpress the murine plasminogen activator inhibitor-1 gene. J Clin Invest 1996;97:232-237. https://doi.org/10.1172/JCI118396
  15. Scotton CJ, Krupiczojc MA, Konigshoff M, et al. Increased local expression of coagulation factor X contributes to the fibrotic response in human and murine lung injury. J Clin Invest 2009;119:2550-2563.
  16. Bonner JC. Regulation of PDGF and its receptors in fibrotic diseases. Cytokine Growth Factor Rev 2004;15:255-273. https://doi.org/10.1016/j.cytogfr.2004.03.006
  17. Leask A, Abraham DJ. The role of connective tissue growth factor, a multifunctional matricellular protein, in fibroblast biology. Biochem Cell Biol 2003;81:355-363. https://doi.org/10.1139/o03-069
  18. Hinz B. The myofibroblast: paradigm for a mechanically active cell. J Biomech 2010;43:146-155. https://doi.org/10.1016/j.jbiomech.2009.09.020
  19. Wipff PJ, Rifkin DB, Meister JJ, Hinz B. Myofibroblast contraction activates latent TGF-beta1 from the extracellular matrix. J Cell Biol 2007;179:1311-1323. https://doi.org/10.1083/jcb.200704042
  20. Willis BC, Liebler JM, Luby-Phelps K, et al. Induction of epithelial-mesenchymal transition in alveolar epithelial cells by transforming growth factor-beta1: potential role in idiopathic pulmonary fibrosis. Am J Pathol 2005;166:1321-1332. https://doi.org/10.1016/S0002-9440(10)62351-6
  21. Kim KK, Kugler MC, Wolters PJ, et al. Alveolar epithelial cell mesenchymal transition develops in vivo during pulmonary fibrosis and is regulated by the extracellular matrix. Proc Natl Acad Sci U S A 2006;103:13180-13185. https://doi.org/10.1073/pnas.0605669103
  22. Tanjore H, Xu XC, Polosukhin VV, et al. Contribution of epithelial-derived fibroblasts to bleomycin-induced lung fibrosis. Am J Respir Crit Care Med 2009;180:657-665. https://doi.org/10.1164/rccm.200903-0322OC
  23. Hashimoto N, Phan SH, Imaizumi K, et al. Endothelialmesenchymal transition in bleomycin-induced pulmonary fibrosis. Am J Respir Cell Mol Biol 2010;43:161-172. https://doi.org/10.1165/rcmb.2009-0031OC
  24. Moore BB, Peters-Golden M, Christensen PJ, et al. Alveolar epithelial cell inhibition of fibroblast proliferation is regulated by MCP-1/CCR2 and mediated by PGE2. Am J Physiol Lung Cell Mol Physiol 2003;284:L342-349. https://doi.org/10.1152/ajplung.00168.2002
  25. Andersson-Sjoland A, de Alba CG, Nihlberg K, et al. Fibrocytes are a potential source of lung fibroblasts in idiopathic pulmonary fibrosis. Int J Biochem Cell Biol 2008;40:2129-2140. https://doi.org/10.1016/j.biocel.2008.02.012
  26. Bartel DP, Chen CZ. Micromanagers of gene expression: the potentially widespread influence of metazoan microRNAs. Nat Rev Genet 2004;5:396-400.
  27. Pandit KV, Corcoran D, Yousef H, et al. Inhibition and role of let-7d in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 2010;182:220-229. https://doi.org/10.1164/rccm.200911-1698OC
  28. Thuault S, Tan EJ, Peinado H, Cano A, Heldin CH, Moustakas A. HMGA2 and Smads co-regulate SNAIL1 expression during induction of epithelial-to-mesenchymal transition. J Biol Chem 2008;283:33437-33446. https://doi.org/10.1074/jbc.M802016200
  29. Dews M, Fox JL, Hultine S, et al. The myc-miR-17-92 axis blunts TGF {beta} signaling and production of multiple TGF {beta}-dependent antiangiogenic factors. Cancer Res 2010;70:8233-8246. https://doi.org/10.1158/0008-5472.CAN-10-2412
  30. Yang S, Banerjee S, de Freitas A, et al. Participation of miR-200 in pulmonary fibrosis. Am J Pathol 2012;180: 484-493. https://doi.org/10.1016/j.ajpath.2011.10.005
  31. Liu G, Friggeri A, Yang Y, et al. miR-21 mediates fibrogenic activation of pulmonary fibroblasts and lung fibrosis. J Exp Med 2010;207:1589-1597. https://doi.org/10.1084/jem.20100035
  32. Milosevic J, Pandit K, Magister M, et al. Profibrotic role of miR-154 in pulmonary fibrosis. Am J Respir Cell Mol Biol 2012;47:879-887. https://doi.org/10.1165/rcmb.2011-0377OC
  33. Pottier N, Maurin T, Chevalier B, et al. Identification of keratinocyte growth factor as a target of microRNA-155 in lung fibroblasts: implication in epithelial-mesenchymal interactions. PLoS One 2009;4:e6718. https://doi.org/10.1371/journal.pone.0006718
  34. Martin J, Jenkins RH, Bennagi R, et al. Post-transcriptional regulation of Transforming Growth Factor Beta-1 by microRNA-744. PLoS One 2011;6:e25044. https://doi.org/10.1371/journal.pone.0025044
  35. Tili E, Michaille JJ, Adair B, et al. Resveratrol decreases the levels of miR-155 by upregulating miR-663, a microRNA targeting JunB and JunD. Carcinogenesis 2010;31:1561-1566. https://doi.org/10.1093/carcin/bgq143
  36. Sanders YY, Pardo A, Selman M, et al. Thy-1 promoter hypermethylation: a novel epigenetic pathogenic mechanism in pulmonary fibrosis. Am J Respir Cell Mol Biol 2008;39:610-618. https://doi.org/10.1165/rcmb.2007-0322OC
  37. Rege TA, Hagood JS. Thy-1, a versatile modulator of signaling affecting cellular adhesion, proliferation, survival, and cytokine/growth factor responses. Biochim Biophys Acta 2006;1763:991-999. https://doi.org/10.1016/j.bbamcr.2006.08.008
  38. Hagood JS, Prabhakaran P, Kumbla P, et al. Loss of fibroblast Thy-1 expression correlates with lung fibrogenesis. Am J Pathol 2005;167:365-379. https://doi.org/10.1016/S0002-9440(10)62982-3
  39. Keane MP, Belperio JA, Arenberg DA, et al. IFNgamma- inducible protein-10 attenuates bleomycin-induced pulmonary fibrosis via inhibition of angiogenesis. J Immunol 1999;163:5686-5692.
  40. Coward WR, Watts K, Feghali-Bostwick CA, Jenkins G, Pang L. Repression of IP-10 by interactions between histone deacetylation and hypermethylation in idiopathic pulmonary fibrosis. Mol Cell Biol 2010;30:2874-2886. https://doi.org/10.1128/MCB.01527-09
  41. Sanders YY, Ambalavanan N, Halloran B, et al. Altered DNA methylation profile in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 2012;186:525-535. https://doi.org/10.1164/rccm.201201-0077OC
  42. Rabinovich EI, Kapetanaki MG, Steinfeld I, et al. Global methylation patterns in idiopathic pulmonary fibrosis. PLoS One 2012;7:e33770. https://doi.org/10.1371/journal.pone.0033770