DOI QR코드

DOI QR Code

Effects of FXR Deficiency and Pioglitazone on Atherosclerosis in ApoE-Knockout Mice

ApoE 결손 생쥐에서 FXR 결핍과 피오글리타존이 동맥경화에 미치는 영향

  • Park, Young Joo (Department of Internal Medicine, Seoul National University College of Medicine) ;
  • Kim, Min Joo (Department of Internal Medicine, Seoul National University College of Medicine) ;
  • Lee, Kwan Jae (Department of Internal Medicine, Seoul National University Bundang Hospital) ;
  • Hwang, Ji-Yeon (Preclinical Research Center, Biomedical Research Institute, Seoul National University Bundang Hospital) ;
  • Lee, Yenna (Department of Internal Medicine, Seoul National University College of Medicine) ;
  • Ahn, Hwa Young (Department of Internal Medicine, Seoul National University College of Medicine) ;
  • Choi, Sung Hee (Department of Internal Medicine, Seoul National University College of Medicine) ;
  • Moon, Min Kyong (Department of Internal Medicine, Seoul National University College of Medicine) ;
  • Lim, Soo (Department of Internal Medicine, Seoul National University College of Medicine) ;
  • Jang, Hak C. (Department of Internal Medicine, Seoul National University College of Medicine) ;
  • Yi, Ka Hee (Department of Internal Medicine, Seoul National University College of Medicine)
  • 박영주 (서울대학교 의과대학 내과학교실) ;
  • 김민주 (서울대학교 의과대학 내과학교실) ;
  • 이관재 (분당서울대학교병원 내과) ;
  • 황지연 (분당서울대학교병원 의생명연구원 전임상실험센터) ;
  • 이예나 (서울대학교 의과대학 내과학교실) ;
  • 안화영 (서울대학교 의과대학 내과학교실) ;
  • 최성희 (서울대학교 의과대학 내과학교실) ;
  • 문민경 (서울대학교 의과대학 내과학교실) ;
  • 임수 (서울대학교 의과대학 내과학교실) ;
  • 장학철 (서울대학교 의과대학 내과학교실) ;
  • 이가희 (서울대학교 의과대학 내과학교실)
  • Received : 2013.01.03
  • Accepted : 2013.01.08
  • Published : 2013.02.01

Abstract

Background/Aims: Both the farnesoid X receptor (FXR) and peroxisome proliferator-activated receptor (PPAR) play important roles in lipid metabolism and atherosclerosis. We investigated the interaction between FXR and $PPAR{\gamma}$. Methods: Apolipoprotein E knockout ($ApoE^{-/-}$) mice and FXR knockout ($FXR^{-/-}$) mice were crossed to generate $ApoE^{-/-}FXR^{-/-}$ mice. The mice were divided into $ApoE^{-/-}$, $ApoE^{-/-}FXR^{-/-}$, and $ApoE^{-/-}FXR^{-/-}$ + pioglitazone groups. All mice were fed a high-fat, high-cholesterol diet for 12 weeks. The $ApoE^{-/-}FXR^{-/-}$ + pioglitazone group was also treated with pioglitazone, 20 mg/kg body weight. Body weight, blood glucose level, lipid profile, and liver enzyme levels were measured. To evaluate atherosclerotic lesions, the aorta was stained with Oil red O. Results: There were no differences in body weight or blood glucose level among the three groups. The serum lipid concentration and liver enzyme levels increased in the $ApoE^{-/-}FXR^{-/-}$ group compared with the $ApoE^{-/-}$ group (p < 0.01). The $ApoE^{-/-}FXR^{-/-}$ + pioglitazone group had lower high-density lipoprotein (HDL) (55 ${\pm}$ 4 vs. 28 ${\pm}$ 2 mg/dL, p < 0.01) and low-density lipoprotein (LDL) (797 ${\pm}$ 26 vs. 682 ${\pm}$ 47 mg/dL, p = 0.04) cholesterol than the $ApoE^{-/-}FXR^{-/-}$ group. The respective percentages of aortic atherosclerotic plaques in the $ApoE^{-/-}$, $ApoE^{-/-}FXR^{-/-}$, and $ApoE^{-/-}FXR^{-/-}$ + pioglitazone groups were 2.7 ${\pm}$ 0.2%, 7.7 ${\pm}$ 1.2%, and 18.6 ${\pm}$ 1.0%. In $ApoE^{-/-}FXR^{-/-}$ mice, the administration of pioglitazone significantly increased the number of atherosclerotic lesions (p = 0.02). Conclusions: Pioglitazone increased the number of atherosclerotic plaques in $ApoE^{-/-}FXR^{-/-}$ mice. This suggests that when FXR is inhibited, the activation of $PPAR{\gamma}$ can aggravate atherosclerosis.

목적: Farnesoid X receptor (FXR)와 peroxisome proliferator- activated receptor (PPAR)는 둘 다 지질 대사와 동맥경화에 중요한 역할을 담당하고 있어 이들의 상호작용에 대해 알아보고자 하였다. 방법: 아포지질단백질 E가 결손된($ApoE^{-/-}$) 생쥐에 추가로 FXR을 결손시켜 $ApoE^{-/-}FXR^{-/-}$ 생쥐를 만들었다. 생쥐는 $ApoE^{-/-}$군, $ApoE^{-/-}FXR^{-/-}$군, $ApoE^{-/-}FXR^{-/-}$ + pioglitazone군, 3군으로 나누어 12주간 고지방 고콜레스테롤 식이를 먹였고 $ApoE^{-/-}FXR^{-/-}$ + pioglitazone군은 pioglitazone을 하루에 몸무게 kg당 20 mg을 식이에 섞어 투여하였다. 이후 체중, 혈당, 혈청 지질 농도, 간효소치를 측정하였다. 대동맥에서 Oil red O 염색을 통해 동맥경화반을 평가하였다. 결과: 세 군 사이에 체중과 혈당에는 차이가 없었다. $ApoE^{-/-}$ $FXR^{-/-}$군은 $ApoE^{-/-}$군에 비하여 모든 종류의 지질 농도와 간효소치가 유의하게 증가하였다(p < 0.01). $ApoE^{-/-}FXR^{-/-}$ + pioglitazone군은 $ApoE^{-/-}FXR^{-/-}$군에 비하여 HDL 콜레스테롤과(55 ${\pm}$ 4 mg/dL vs. 28 ${\pm}$ 2 mg/dL, p < 0.01) LDL 콜레스테롤이(797 ${\pm}$ 26 mg/dL vs. 682 ${\pm}$ 47 mg/dL, p = 0.04) 유의하게 감소하였다. 동맥경화반은 $ApoE^{-/-}$군, $ApoE^{-/-}FXR^{-/-}$군, $ApoE^{-/-}FXR^{-/-}$ + pioglitazone군에서 각각 2.7 ${\pm}$ 0.2%, 7.7 ${\pm}$ 1.2%, 18.6 ${\pm}$ 1.0%로 증가하였다. $ApoE^{-/-}FXR^{-/-}$ 생쥐에서 pioglitazone의 투여는 유의하게 동맥경화를 증가시켰다(p = 0.02). 결론: 본 연구에서 $ApoE^{-/-}FXR^{-/-}$ 생쥐에서 pioglitazone의 투여는 동맥경화반의 발생을 증가시켜 FXR이 억제된 상태에서 $PPAR{\gamma}$의 활성화는 동맥경화에 나쁜 영향을 미칠 수 있음을 시사하였다.

Keywords

References

  1. Goodwin B, Jones SA, Price RR, et al. A regulatory cascade of the nuclear receptors FXR, SHP-1, and LRH-1 represses bile acid biosynthesis. Mol Cell 2000;6:517-526. https://doi.org/10.1016/S1097-2765(00)00051-4
  2. Urizar NL, Dowhan DH, Moore DD. The farnesoid X-activated receptor mediates bile acid activation of phospholipid transfer protein gene expression. J Biol Chem 2000;275: 39313-39317. https://doi.org/10.1074/jbc.M007998200
  3. Lambert G, Amar MJ, Guo G, Brewer HB Jr, Gonzalez FJ, Sinal CJ. The farnesoid X-receptor is an essential regulator of cholesterol homeostasis. J Biol Chem 2003;278:2563-2570. https://doi.org/10.1074/jbc.M209525200
  4. Claudel T, Inoue Y, Barbier O, et al. Farnesoid X receptor agonists suppress hepatic apolipoprotein CIII expression. Gastroenterology 2003;125:544-555. https://doi.org/10.1016/S0016-5085(03)00896-5
  5. Watanabe M, Houten SM, Wang L, et al. Bile acids lower triglyceride levels via a pathway involving FXR, SHP, and SREBP-1c. J Clin Invest 2004;113:1408-1418. https://doi.org/10.1172/JCI21025
  6. Mencarelli A, Renga B, Distrutti E, Fiorucci S. Antiatherosclerotic effect of farnesoid X receptor. Am J Physiol Heart Circ Physiol 2009;296:H272-H281. https://doi.org/10.1152/ajpheart.01075.2008
  7. Hanniman EA, Lambert G, McCarthy TC, Sinal CJ. Loss of functional farnesoid X receptor increases atherosclerotic lesions in apolipoprotein E-deficient mice. J Lipid Res 2005;46:2595-2604. https://doi.org/10.1194/jlr.M500390-JLR200
  8. Zhang Y, Wang X, Vales C, et al. FXR deficiency causes reduced atherosclerosis in Ldlr-/- mice. Arterioscler Thromb Vasc Biol 2006;26:2316-2321. https://doi.org/10.1161/01.ATV.0000235697.35431.05
  9. Chawla A, Barak Y, Nagy L, Liao D, Tontonoz P, Evans RM. PPAR-gamma dependent and independent effects on macrophage-gene expression in lipid metabolism and inflammation. Nat Med 2001;7:48-52. https://doi.org/10.1038/83336
  10. Li AC, Brown KK, Silvestre MJ, Willson TM, Palinski W, Glass CK. Peroxisome proliferator-activated receptor gamma ligands inhibit development of atherosclerosis in LDL receptor-deficient mice. J Clin Invest 2000;106:523-531. https://doi.org/10.1172/JCI10370
  11. Chen Z, Ishibashi S, Perrey S, et al. Troglitazone inhibits atherosclerosis in apolipoprotein E-knockout mice: pleiotropic effects on CD36 expression and HDL. Arterioscler Thromb Vasc Biol 2001;21:372-377. https://doi.org/10.1161/01.ATV.21.3.372
  12. Berger J, Moller DE. The mechanisms of action of PPARs. Annu Rev Med 2002;53:409-435. https://doi.org/10.1146/annurev.med.53.082901.104018
  13. Dwivedi SK, Singh N, Kumari R, et al. Bile acid receptor agonist GW4064 regulates $PPAR{\gamma}$ coactivator-1$\alpha$ expression through estrogen receptor-related receptor $\alpha$. Mol Endocrinol 2011;25:922-932. https://doi.org/10.1210/me.2010-0512
  14. Fiorucci S, Rizzo G, Antonelli E, et al. Cross-talk between farnesoid-X-receptor (FXR) and peroxisome proliferatoractivated receptor gamma contributes to the antifibrotic activity of FXR ligands in rodent models of liver cirrhosis. J Pharmacol Exp Ther 2005;315:58-68. https://doi.org/10.1124/jpet.105.085597
  15. Zhang Y, Castellani LW, Sinal CJ, Gonzalez FJ, Edwards PA. Peroxisome proliferator-activated receptor-gamma coactivator 1alpha (PGC-1alpha) regulates triglyceride metabolism by activation of the nuclear receptor FXR. Genes Dev 2004;18:157-169. https://doi.org/10.1101/gad.1138104
  16. Dormandy JA, Charbonnel B, Eckland DJ, et al. Secondary prevention of macrovascular events in patients with type 2 diabetes in the PROactive Study (PROspective pioglit- Azone Clinical Trial In macroVascular Events): a randomised controlled trial. Lancet 2005;366:1279-1289. https://doi.org/10.1016/S0140-6736(05)67528-9
  17. Nissen SE, Nicholls SJ, Wolski K, et al. Comparison of pioglitazone vs glimepiride on progression of coronary atherosclerosis in patients with type 2 diabetes: the PERISCOPE randomized controlled trial. JAMA 2008;299: 1561-1573. https://doi.org/10.1001/jama.299.13.1561
  18. Mazzone T, Meyer PM, Feinstein SB, et al. Effect of pioglitazone compared with glimepiride on carotid intimamedia thickness in type 2 diabetes: a randomized trial. JAMA 2006;296:2572-2581. https://doi.org/10.1001/jama.296.21.joc60158
  19. Collins AR, Meehan WP, Kintscher U, et al. Troglitazone inhibits formation of early atherosclerotic lesions in diabetic and nondiabetic low density lipoprotein receptor-deficient mice. Arterioscler Thromb Vasc Biol 2001;21:365-371. https://doi.org/10.1161/01.ATV.21.3.365
  20. Nakaya H, Summers BD, Nicholson AC, Gotto AM Jr, Hajjar DP, Han J. Atherosclerosis in LDLR-knockout mice is inhibited, but not reversed, by the PPARgamma ligand pioglitazone. Am J Pathol 2009;174:2007-2014. https://doi.org/10.2353/ajpath.2009.080611
  21. Thorp E, Kuriakose G, Shah YM, Gonzalez FJ, Tabas I. Pioglitazone increases macrophage apoptosis and plaque necrosis in advanced atherosclerotic lesions of nondiabetic low-density lipoprotein receptor-null mice. Circulation 2007;116:2182-2190. https://doi.org/10.1161/CIRCULATIONAHA.107.698852
  22. Akiyama TE, Sakai S, Lambert G, et al. Conditional disruption of the peroxisome proliferator-activated receptor gamma gene in mice results in lowered expression of ABCA1, ABCG1, and apoE in macrophages and reduced cholesterol efflux. Mol Cell Biol 2002;22:2607-2619. https://doi.org/10.1128/MCB.22.8.2607-2619.2002
  23. Tontonoz P, Nagy L, Alvarez JG, Thomazy VA, Evans RM. PPARgamma promotes monocyte/macrophage differentiation and uptake of oxidized LDL. Cell 1998;93:241-252. https://doi.org/10.1016/S0092-8674(00)81575-5
  24. Matveev S, van der Westhuyzen DR, Smart EJ. Co-expression of scavenger receptor-BI and caveolin-1 is associated with enhanced selective cholesteryl ester uptake in THP-1 macrophages. J Lipid Res 1999;40:1647-1654.
  25. Arakawa R, Abe-Dohmae S, Asai M, Ito JI, Yokoyama S. Involvement of caveolin-1 in cholesterol enrichment of high density lipoprotein during its assembly by apolipoprotein and THP-1 cells. J Lipid Res 2000;41:1952-1962.
  26. Chinetti G, Lestavel S, Bocher V, et al. PPAR-alpha and PPAR-gamma activators induce cholesterol removal from human macrophage foam cells through stimulation of the ABCA1 pathway. Nat Med 2001;7:53-58. https://doi.org/10.1038/83348
  27. Mencarelli A, Cipriani S, Renga B, et al. The bile acid sensor FXR protects against dyslipidemia and aortic plaques development induced by the HIV protease inhibitor ritonavir in mice. PLoS One 2010;5:e13238. https://doi.org/10.1371/journal.pone.0013238
  28. Abdelkarim M, Caron S, Duhem C, et al. The farnesoid X receptor regulates adipocyte differentiation and function by promoting peroxisome proliferator-activated receptor-gamma and interfering with the Wnt/beta-catenin pathways. J Biol Chem 2010;285:36759-36767. https://doi.org/10.1074/jbc.M110.166231
  29. Tian Y, Yuan Z, Liu Y, et al. Pioglitazone modulates the balance of effector and regulatory T cells in apolipoprotein E deficient mice. Nutr Metab Cardiovasc Dis 2011;21:25-32. https://doi.org/10.1016/j.numecd.2009.07.010
  30. Shen Y, Yuan Z, Yin A, et al. Antiatherogenic effect of pioglitazone on uremic apolipoprotein E knockout mice by modulation of the balance of regulatory and effector T cells. Atherosclerosis 2011;218:330-338. https://doi.org/10.1016/j.atherosclerosis.2011.07.112