DOI QR코드

DOI QR Code

A simulation on fall detection system for the elders

노인의 낙상 검출 시스템에 관한 연구

  • Received : 2013.03.07
  • Accepted : 2013.03.13
  • Published : 2013.03.30

Abstract

According to a survey, more than 50% of the elders fall which is the most frequent daily safety accident of the elders takes place at home. Furthermore, the elders fall is anticipated to increase as more elderly people are expected to live alone since, 67.1% of the elders of 65 or more do not hope to live with their children. This research aims to verify the fall by measuring and analyzing the floor vibration, and the hardware system was also designed was Piezo Film Sensor, Op-Amp, and DAQ. The system is consists of signal processing part for measuring floor vibration and alarm part for identifying the consciousness of the user when the fall occurs. The fall detection by vibration signals verified by k-Nearest Neighbor verification, and the results showed the error rate of 3.8%.

노인의 생활안전 사고 유형 중 가장 높은 비율을 차지하는 낙상은 50% 이상이 가정에서 발생하는 것으로 조사되었다. 또한 만 65세 이상 노인의 67.1%는 자녀와 동거를 희망하지 않으며 점점 더 독거노인의 비율은 늘어나, 낙상으로 인한 사고의 발생률은 더 높아질 것이다. 본 연구에서는 실내 바닥의 진동을 측정, 분석하여 낙상의 유무를 판별하고자 하였으며 이를 위해 피에조 필름 센서와 Op-Amp, DAQ를 이용하여 하드웨어를 구성하였다. 여기서 제안한 시스템은 바닥 진동을 측정할 수 있는 신호 처리부, 낙상 발생 시 사용자의 의식 확인을 위한 경보부로 구성하였다. 진동 신호는 k-NN분류기를 이용하여 낙상 유무를 판별한다. 실험결과, 분류기는 3.8%의 오차를 나타내어, 진동을 이용한 낙상 검출 가능성을 보여주고 있다.

Keywords

References

  1. "Investigation of accidents of life of the elderly in 2007", Korea Consumer Agency, 2007
  2. Jong-Min Kim, Myung-Sun Lee, "Risk Factors for Falls in the Elderly Population in Korea:An Analysis of the Third Korea National Health and Nutrition Examination Survey data", Joural of Korea Society for Health Education and Promotion Vol.24, No 4, pp. 23-39, 2007
  3. Chia-Wen Lin, Zhi-Hong Ling, Yuan-Cheng Chang, Chung J. Kuo, "Compressed-domain fall incident detection for intelligent home surveillance", IEEE International Symposium on Circuits and Systems, Vol. 4, pp.3781-3784, May 2005
  4. C. F. Juang and C. M. Chang, "Human Body Posture Classification by a Neural Fuzzy Network and Home Care System Application," IEEE Trans. Systems, Man and Cybernetics, Part A: Systems and Humans, Vol. 37, No. 6, pp. 984-994, Nov. 2007. https://doi.org/10.1109/TSMCA.2007.897609
  5. T. Zhang, J. Wang, L. Xu and P. Liu, Detection by Wearable "Fall Sensor and One-Class SVM Algorithm," in Lecture Notes in Control and Information Sciences, pp. 858-863, 2006.
  6. T. Zhang, J. Wang, P. Liu and J. Hou, Journal "Fall Detection by Embedding an Accelerometer in Cellphone and Using KFD Algorithm," IJCSNS International of Computer Science and Network Security, Vol. 6, No. 10, pp. 277-284, Oct. 2006.
  7. J. Y. Hwang, J. M. Kang, Y. W. Jang, and H. C. Kim, "Development of Novel Algorithm and Real-time Monitoring Ambulatory System Using Bluetooth Module for Fall Detection in the Elderly," in Proc. 26th Annu. Int. Conf. IEEE EMBS, pp. 2204-2207, Sep. 2004.
  8. U. Lindemann, A. Hock, M. Stuber, W. Keck and C. Becker, "Evaluation of a fall detector based on accelerometers: A pilot study," Medical and Biological Engineering and Computing, Vol. 43, No. 5, pp.548-551, Jun. 2005. https://doi.org/10.1007/BF02351026
  9. T. Degen, H. Jaeckel, M. Rufer and S. Wyss, "SPEEDY:a fall detector in a wrist watch," in Proc. 7th IEEE Int. Symp. Wearable Computers, pp. 184-187, Oct. 2005.

Cited by

  1. Fall detection of the elderly through floor vibrations vol.18, pp.1, 2014, https://doi.org/10.7471/ikeee.2014.18.1.134
  2. 한국 노인의 넘어짐과 연계된 인체손상에 대한 이해와 예방: 체계적 문헌 고찰 vol.26, pp.2, 2013, https://doi.org/10.12674/ptk.2019.26.2.034