DOI QR코드

DOI QR Code

In vitro 발효에서 Prebiotics와 Probiotics가 돼지 장내미생물과 발효산물에 미치는 영향

Effects of Prebiotics and Probiotics on Swine Intestinal Microflora and Fermentation Products In Vitro Fermentation

  • 김동운 (농촌진흥청 국립축산과학원) ;
  • 채수진 (농촌진흥청 국립축산과학원) ;
  • 김영화 (농촌진흥청 국립축산과학원) ;
  • 정현정 (농촌진흥청 국립축산과학원) ;
  • 이성대 (농촌진흥청 국립축산과학원) ;
  • 박준철 (농촌진흥청 국립축산과학원) ;
  • 조규호 (농촌진흥청 국립축산과학원) ;
  • 사수진 (농촌진흥청 국립축산과학원) ;
  • 김인철 (농촌진흥청 국립축산과학원) ;
  • 김인호 (단국대학교 동물자원학과)
  • 투고 : 2012.08.27
  • 심사 : 2012.12.27
  • 발행 : 2013.03.31

초록

본 연구는 prebiotics와 probiotics가 in vitro 배양조건에서 돼지 장내 미생물 및 발효산물에 미치는 영향에 대하여 검토 하였다. prebiotics로써 이소말토-올리고당(IMO), 부분분해 치커리이눌린(CI), 라피노스(RA), 사이클로덱스트린(CD)을 사용하였으며 probiotics로는 Lactobacillus reuteri를 사용하였다. In vitro 발효시험은 육성돈 사료를 소화효소로 가수분해 시킨 사료와 5%의 돈분 그리고 prebiotics와 probiotics를 첨가 또는 무첨가하여 24시간 동안 배양시켰다. 배양 후 발효액 내의 미생물, 가스, pH, 암모니아, 황화수소, 단쇄지방산을 분석하였다. 엔테로박테리아는 prebiotics와 probiotics 첨가구가 대조구와 비교하여 유의적으로 감소하였으며, 락토바실러스 수는 유의적으로 증가하였다. 발효액의 pH는 대조구에 비하여 첨가구에서 낮았으며 prebiotics보다 prebiotics+probiotics 첨가구에서 더욱 낮았다. 암모니아, 황화수소 및 스카톨의 농도는 prebiotics+probiotics 구보다 prebiotics 첨가시 유의적으로 감소하였다. 단쇄지방산은 prebiotics 보다 prebiotics+probiotics 구에서 유의적으로 많이 생성되었다. 본 시험의 결과 prebiotics 첨가는 암모니아, 황화수소 및 스카톨의 농도를 감소시키는데 효과가 있었으며, prebiotics+probiotics는 유산균과 단쇄지방산의 농도를 증가시키는 효과가 있었다. In vitro에서 얻어진 실험 결과가 실제로 돼지에 급여 시 같은 결과가 얻어질런지에 대한 추가적인 연구가 필요하다.

In the present study, the effects of prebiotics and prebiotics+probiotics on intestinal microflora and fermentation products were evaluated in a pig in vitro fermentation model. The substrates used in this study were iso-malto oligosaccharide (IMO), partially digested chicory-inulin (CI), raffinose (RA), and cyclodextrin (CD) as prebiotics and Lactobacillus reiteri as probiotics. For a pig in vitro fermentation, the experimental diet for growing pigs was predigested using digestive enzymes secreted by small intestine and this hydrolyzed diet was mixed with a buffer solution containing 5% fresh swine feces. The mixture was then incubated with either prebiotics or prebiotics+probiotics for 24 h. Samples were taken at 24 h, and viable counts of microflora, gas, pH, volatile organic compounds (VOCs) and short-chain fatty acid (SCFA) were analyzed. The viable count of Enterobacteriaceae was significantly decreased (p<0.001) in all treatments containing prebiotics and prebiotics+probiotics when compared to the control. However, the number of lactic acid bacteria increased in the prebiotics and prebiotics+probiotics treatment. The pH values in the fermentation fluid decreased in all treatments when compared to the control, and their effects were greater in the prebiotics+probiotics group than prebiotics group. Fermentation with prebiotics resulted in a reduction in malodorous compounds such as ammonia, hydrogen sulfide and skatole when compared to the prebiotics+probiotics group. Short-chain fatty acid production was also higher for treatment with prebiotics+probiotics than treatment with prebiotics. In conclusion, the results of this study demonstrated that fermentation with prebiotics was effective in reducing the formation of malodorous compounds and prebiotics+probiotics was effective in increasing lactic acid bacteria and SCFA and reducing the pH. Moreover, further studies will be needed to determine whether the results observed in the in vitro model would occur in pigs that ingest these prebiotics or probiotics.

키워드

참고문헌

  1. Abe, F., Ishibashi, N., and Shimamura, S. 1995. Effect of administration of bifidobacteria and lactic acid bacteria to newborn calves and piglets. J. Dairy Sci. 78, 2838-2846. https://doi.org/10.3168/jds.S0022-0302(95)76914-4
  2. Alexopoulus, C., Georgoulakis, I.E., Tzivara, A., Kritas, S.K., Siochu, A., and Kyriakis, S.C. 2004a. Field evaluation of the efficacy of a probiotic containing Bacillus licheniformis and Bacillus subtilis spores, on the health status and performance of sows and their litters. J. Anim. Physiol. Anim. Nutr. 88, 381-392. https://doi.org/10.1111/j.1439-0396.2004.00492.x
  3. Alexopoulus, C., Georgoulakis, I.E., Tzivara, A., Govaris, A., and Kyriakis, S.C. 2004b. Field evaluation of the effect of a probiotic-containing Bacillus licheniformis and Bacillus subtilis spores on the health status, performance and carcass quality of grower and finisher pigs. J. Vet. Med. A. Physiol. Clin. Med. 51, 306-312. https://doi.org/10.1111/j.1439-0442.2004.00637.x
  4. Boisen, S. and Fernandez, J.A. 1995. Prediction of the apparent ileal digestibility of protein and amino acids in feedstuffs and feed mixtures for pigs by in vitro analyses. Anim. Feed Sci. Technol. 51, 29-43. https://doi.org/10.1016/0377-8401(94)00686-4
  5. Chaney, A.L. and Marbach, E.P. 1962. Modified regent for determination of urea and ammonia. Clin. Chem. 8, 131-139.
  6. Collins, M.D. and Gibson, G.R. 1999. Probiotics, prebiotics, and synbiotics: approaches for modulating the microbial ecology of the gut. Am. J. Clin. Nutr. 69, 1052S-1057S. https://doi.org/10.1093/ajcn/69.5.1052s
  7. Danek, P., Novak, J., Semradova, H., and Diblikova, E. 1991. Administration of the probiotics Lactobacillus casei CCM-4160 to sows-its effects on piglet efficiency. Zivocisna Vryoba 36, 411-415.
  8. Delzenne, N.M. and Roberfroid, M.R. 1994. Physiological effects of non-digestible oligosaccharides. Lebensm-Wiss. Technol. 27, 1-6. https://doi.org/10.1006/fstl.1994.1001
  9. Ferorak, P.M. and Hrwdey, S.E. 1983. A simple apparatus for measuring gas production by methanogenic cultures in serum bottles. Environ. Technol. Lett. 4, 425. https://doi.org/10.1080/09593338309384228
  10. Flickinger, E.A., Wolf, B.A., Garleb, K.A., Chow, J., Leyer, G.J., Jhons, P.W., and Fahey Jr, G.C. 2000. Glucose-based oligosaccharides exhibit different in vitro fermentation patterns and affect in vivo apparent nutrient digestibility and microbial populations in dogs. J. Nutr. 130, 1267-1273. https://doi.org/10.1093/jn/130.5.1267
  11. Gibson, G.R. and Roberfroid, M.B. 1995. Dietary modulation of the human colonic microbiota : Introducing the concept of prebiotics. J. Nutr. 125, 1401-1412.
  12. Gottschalk, G. 1979. Bacterial Metabolism, pp. 167-224. Springer-Verlag, New York, N.Y., USA.
  13. Govers, M.J., Gannon, N.J., Dunshea, F.R., Gibson, P.R., and Muir, J.G. 1999. Wheat bran affect the site of fermentation of resistant starch and luminal indexes related to colon cancer risk: a study in pigs. Gut 45, 840-847. https://doi.org/10.1136/gut.45.6.840
  14. Havenaar, R. and Huis in't Veld, M.J.H. 1992. Lactic acid bacteria in health and disease, Vol. 1, p. 125. Elsevier Applied Science Publishers, Amsterdam.
  15. Hill, M.J. 1983. Milk Intolerance and Rejection, p. 22-26. Basel Karger.
  16. Imoto, S. and Nakasima, S. 1978. VFA production in the pig large intestine. J. Anim. Sci. 47, 467-478. https://doi.org/10.2527/jas1978.472467x
  17. Levrat, M.A., Remesy, C., and Demigne, C. 1993. Influence of inulin on urea and ammonia nitrogen fluxes in the rat cecum: Consequences on nitrogen excretion. J. Nutr. Biochem. 4, 351-356. https://doi.org/10.1016/0955-2863(93)90081-7
  18. Makras, L. and Vuyst, L.D. 2006. The in vitro inhibition of Gram-negative pathogenic bacteria by bifidobacteria is caused by the production of organic acids. Int. Dairy J. 16, 1049-1057. https://doi.org/10.1016/j.idairyj.2005.09.006
  19. Martin Del Valle, E.M. 2004. Cyclodextrins and their uses: a review. Proc. Biochem. 39, 1033-1046. https://doi.org/10.1016/S0032-9592(03)00258-9
  20. Mathew, A.G., Chattin, S.E., Robbings, C.M., and Golden, D.A. 1998. Effects of a direct fed yeast culture on enteric microbial populations, fermentation acid, and performance of weanling pigs. J. Anim. Sci. 76, 2138-2145. https://doi.org/10.2527/1998.7682138x
  21. McDougall, E.T. 1948. Studies on ruminant saliva. 1. The compositon and output of sheep's saliva. Biochem. J. 43, 99-109. https://doi.org/10.1042/bj0430099
  22. Mikkelsen, L.L., Jakobsen, M., and Jensen, B.B. 2003. Effects of dietary oligosaccharides on microbial diversity and fructo-oligosaccharide degrading bacteria in faeces of piglets post-weaning. Anim. Feed Sci. Technol. 109, 133-150. https://doi.org/10.1016/S0377-8401(03)00172-X
  23. Mroz, Z., Moeser, A.J., Vreman, K., van Diepen, J.T., van Kempen, T., Canh, T.T., and Jongbloed, A.W. 2000. Effects of dietary carbohydrates and buffering capacity on nutrient digestibility and manure characteristics in finishing pigs. J. Anim. Sci. 78, 3096-3106. https://doi.org/10.2527/2000.78123096x
  24. Nemcova, R., Bomba, A., Gancarcikova, S., Herich, R., and Guba, P. 1999. Study of the effect of Lactobacillus paracasei and fructo-oligosaccharides on the faecal microflora in weanling piglets. Berl. Munch. Tierarztl. Wschr. 112, 225-228.
  25. Piva, A., Meola, E., Formigoni, A., Panciroli, A., Bertuzzi, T., Pietri, A., and Mordenti, A. 1997. Lactitol controls indole and 3-methylindole production by swine cecal microflora. p. 470. 7th Annu. Meet. EAAP.
  26. Roediger, W.E.W. 1982. Utilization of nutrients by isolated epithelial cells of the rat colon. Gastroenterology 83, 424-432.
  27. Rowland, I.R. and Tanaka, R. 1993. The effects of transgalatosylated oligosaccharides on gut flora metabolism in rats associated with human faecal microflora. J. Appl. Bacteriol. 74, 667-674. https://doi.org/10.1111/j.1365-2672.1993.tb05201.x
  28. Schrezenmeir, J. and de Vrese, M. 1999. Probiotics, prebiotics, and synbiotics - approaching a definition. Am. J. Clin. Nutr. 73, suppl. 361-364.
  29. Shim, S.B., Williams, I.H., and Verstegen, M.W.A. 2005. Effects of dietary fructo-oligosaccharide on villous height and disaccharidase activity of the small intestine, pH, VFA and ammonia concentrations in the large intestine of weaned pigs. Acta Agriculturae Scand Section A 55, 91-97 https://doi.org/10.1080/09064700500307201
  30. Stewart, C., Hillman, S.K., Maxwell, F., Kelly, D., and King, T.P. 1993. Recent Advances in Animal Nutrition. pp. 197-220. Nottingham University Press.
  31. Van Heugten, E. and van Kempen, T.A.T.G. 2002. Growth performance, carcass characteristics, nutrient digestibility and fecal odorour compounds in growing-finishing pigs fed diets containing hydrolyzed feather meal. J. Anim. Sci. 80, 171-178. https://doi.org/10.2527/2002.801171x
  32. Wang, X. and Gibson, G.R. 1993. Effects of the in vitro fermentation of oligofructose and inulin by bacteria growing in the human large intestine. J. Appl. Bacter. 75, 378-380.
  33. Willing, S., Losel, D., and Claus, R. 2005. Effect of resistant potato starch on odor emission from feces in swine production units. Agric. Food Chem. 53, 1173-1178. https://doi.org/10.1021/jf048658+
  34. Younes, H., Coudray, C., Belanger, J., Demigne, C., Rayssiguier, Y., and Remesy, C. 2001. Effects of two fermentable carbohydrates (inulin and resistant starch) and their combination on calcium and magnesium balance in rats. Br. J. Nutr. 86, 479-485. https://doi.org/10.1079/BJN2001430

피인용 문헌

  1. Effects of Dietary Probiotics as an Alternative to Antibiotics on Growth Performance, Biochemical Characteristics and Immune Response in Weaning Pigs vol.24, pp.4, 2014, https://doi.org/10.5352/JLS.2014.24.4.352