DOI QR코드

DOI QR Code

Measurement of the Propagation Constant of a Power Cable Using a Two-Port Time-Domain Reflectometry Technique

Two-Port Time Domain Reflectometry 방법을 이용한 XLPE 전력용 케이블의 전파 특성 측정

  • Shin, Dong Sik (Department of Electrical Engineering, Pohang University of Science and Technology) ;
  • Cho, Hyeon Dong (Department of Electrical Engineering, Pohang University of Science and Technology) ;
  • Park, Wee Sang (Department of Electrical Engineering, Pohang University of Science and Technology) ;
  • Yi, Sang-Hwa (Korea Electrotechnology Research Institute) ;
  • Sun, Jong-Ho (Korea Electrotechnology Research Institute)
  • 신동식 (포항공과대학교 전자전기공학과) ;
  • 조현동 (포항공과대학교 전자전기공학과) ;
  • 박위상 (포항공과대학교 전자전기공학과) ;
  • 이상화 (한국전기연구원) ;
  • 선종호 (한국전기연구원)
  • Received : 2012.11.30
  • Accepted : 2013.01.25
  • Published : 2013.03.31

Abstract

This paper presents a two-port time-domain reflectometry(TDR) measurement technique for extracting the complex propagation constant of a cross-linked polyethylene(XLPE) cable. For the extraction, a short pulse transmitted through the cable is measured in the time domain and analyzed in the frequency domain. The propagation constant of a 22.9 kV XLPE cable with a conductor area of 325 $mm^2$ is extracted up to a frequency of approximately 2.14 GHz. The $S_{21}$ measured using a network analyzer and the two-port TDR technique are compared for verification. As a result compared with previous TDR method, the upper possible frequency limit for extracting the propagation constant increases and the measurement error decreases.

본 논문에서는 전력 케이블의 전파상수를 추출하는 2-port time-domain reflectometry(TDR) 방법을 제안한다. 케이블을 투과하는 펄스 신호를 시간 영역에서 측정하고 주파수 영역에서 분석하여 전파상수를 추출하였다. 22.9 kV 325 $mm^2$ XLPE 케이블의 전파상수를 2.14 GHz까지 추출하고 network analyzer 로 측정한 케이블의 $S_{21}$을 비교하여 2-port TDR 방법의 타당성을 입증하였다. 그 결과, 기존의 TDR 방법보다 측정 가능한 상한 주파수가 증가하고, 고주파수에서 오차가 줄어드는 것을 확인하였다.

Keywords

References

  1. H. Oonishi, F. Urano, T. Mochizuki, K. Soma, K. Kotani, and K. Kamio, "Development of new diagnostic method for hot-line XLPE cables with water trees", IEEE Trans. Power Delivery, vol. 2, no. 1, pp. 1-7, 1987.
  2. K. Suzuki, Y. Tanaka, T. Takada, Y. Ohki, and C. Takeya, "Correlation between space charge distribution and water-tree location in aged XLPE cable", IEEE Trans. Dielectrics and Electrical Insulation, vol. 8, no. 1, pp. 78-81, 2001. https://doi.org/10.1109/94.910428
  3. P. Werelius, P. Tharning, R. Eriksson, B. Holmgren, and U. Gafvert, "Dielectric spectroscopy for diagnosis of water tree deterioration in XLPE cables", IEEE Trans. Dielectrics and Electrical Insulation, vol. 8, no. 1, pp. 27-42, 2001. https://doi.org/10.1109/94.910423
  4. S. H. Shaw, "Water treeing in solid dielectrics", IEEE Transactions on Electrical Insulation, vol. 19, no. 5, pp. 419-452, 1984.
  5. H. N. O. T. R. Blackburn, B. T. Phung, M. Vakilian, M. S. Naderi, and H. Zhang, "Investigation of high frequency signal propagation characteristics on HV XLPE cables", 2005 International Power Engineering Conference, vol. 2, pp. 776-781, Nov. 2005.
  6. R. Papazyan, R. Eriksson, "Calibration for time domain propagation constant measurements on power cables", IEEE Trans. Instrumentation and Measurement, vol. 52, pp. 415-418, Apr. 2003. https://doi.org/10.1109/TIM.2003.811657
  7. G. Mugala, R. Papazyan, and P. Nakov, "High frequency characteristics of medium voltage cables using time domain reflectometry techniques", in Proc. 17th Nordic Insulation Symp. Elect. Insulation, NORD- IS'01, pp. 211-218, 2001.
  8. D. K. Cheng, Field and Wave Electromagnetics, 2nd Ed., MA:Addison-Wesley, pp. 449-471, 1989.
  9. D. M. Pozar, Microwave Engineering, 3rd Ed., John Wiley & Sons, pp. 244-246, 2005.
  10. B. C. Wadell, Transmission Line Design Handbook, Boston, MA: Artech House, pp. 268-270, 1991.