DOI QR코드

DOI QR Code

Characteristics of Benthic Invertebrates in Organic and Conventional Paddy Field

논 생태계 내 유기농법 재배 지역과 관행농법 재배 지역의 저서무척추동물군집의 특성

  • Han, Min-Su (Climate Change and Agroecology Division, National Academy of Agricultural Science, RDA) ;
  • Nam, Hyung-Kyu (The Korea Institute of Ornithology and Department of Biology, Kyung Hee University) ;
  • Kang, Kee-Kyung (Climate Change and Agroecology Division, National Academy of Agricultural Science, RDA) ;
  • Kim, Miran (Climate Change and Agroecology Division, National Academy of Agricultural Science, RDA) ;
  • Na, Young-Eun (Climate Change and Agroecology Division, National Academy of Agricultural Science, RDA) ;
  • Kim, Hye Rim (Climate Change and Agroecology Division, National Academy of Agricultural Science, RDA) ;
  • Kim, Myung-Hyun (Climate Change and Agroecology Division, National Academy of Agricultural Science, RDA)
  • 한민수 (농촌진흥청 국립농업과학원) ;
  • 남형규 (경희대학교 생물학과.한국조류연구소) ;
  • 강기경 (농촌진흥청 국립농업과학원) ;
  • 김미란 (농촌진흥청 국립농업과학원) ;
  • 나영은 (농촌진흥청 국립농업과학원) ;
  • 김혜림 (농촌진흥청 국립농업과학원) ;
  • 김명현 (농촌진흥청 국립농업과학원)
  • Received : 2012.12.07
  • Accepted : 2013.01.12
  • Published : 2013.03.31

Abstract

BACKGROUND: Today, environmentally friendly farming has become an important feature of agricultural policy. It promotes or sustains farming systems which protect and enhance the environment. This study was conducted to compare benthic invertebrate communities in an organic and a conventional paddy field in South Korea. METHODS AND RESULTS: Benthic invertebrates were collected at 11 regions of a rice paddy from June to August, 2009, 2010 and 2011. These comparisons undertaken using a community assessment approaches such as the number of individuals and species and community composition. Generally, the larger number of individuals and species of benthic invertebrates was observed in an organic paddy than in a conventional paddy field. Organic paddy fields could supported the wider range of species and abundance in aquatic invertebrates comparing to conventional paddy fields. Carrying capacity to support larger numbers of invertebrates also tends to be higher in organic paddy than in conventional paddy field. Specially, organic farming regions surrounded by forests were high quality habitat for benthic invertebrates than other surrounded regions such as grassland. CONCLUSION(S): We concluded that organic farming was more advantaged to benthic invertebrates than conventional farming. In order to improve biodiversity in rice paddy field, farming regimes without agricultural chemicals are recommended. The effect of organic management on biodiversity and abundance of benthic invertebrates could be maximized across highland farmland.

최근 사회의 발전과 더불어 소비자들의 요구가 다양화되고, 환경에 대한 관심이 증가하면서 생산성 증대에서 환경 보전에 기여하는 농업으로의 전환의 필요성이 커지게 되었다. 유기농법과 관행농법과 같은 재배 방식의 차이는 생물 서식지에 다양한 영향을 끼치기 때문에 실제 유기농업이 생물에게 미치는 영향을 확인하기 위해서 두 농법에 따른 생물다양성 차이를 비교할 필요가 있다. 본 연구는 유기농법 지역과 관행농법 지역의 저서무척추동물의 군집 특성을 비교하기 위해 수행되었다. 조사 기간은 2009년부터 2011년까지였고 11개 지역을 조사 대상지로 하였다. 영농방법에 따라 개체수, 종수, 종구성 특성을 비교하였다. 저서무척추동물은 유기농법 지역에서 훨씬 많은 개체수와 종수가 기록되었으며, 종수와 개체수의 범위도 관행농법 지역에 비해 월등히 높은 것을 확인 할 수 있었다. 특히, 산림 지역으로 둘러싸인 지역에서 유기농법으로 재배할 경우 다른 경관적 요소로 둘러싸인 지역보다 저서무척추동물의 종수 및 개체수 증가에 더 큰 영향을 미치는 것을 확인 할 수 있었다. 종다양성을 유지 또는 회복하기 위해서 농약과 같은 화학물질의 사용을 제한해야 하며, 특히, 산간 지역의 논생태계에서 유기농법으로 벼를 재배할 경우 저서무척추동물의 종다양성이 크게 높아질 것으로 기대된다.

Keywords

References

  1. Baidu-Forson, J.J., Hodgkin, T., Jones, M., 2012. Introduction to special issue on agricultural biodiversity, ecosystems and environment linkages in Africa, Agric. Ecosyst. Environ. 157, 1-4. https://doi.org/10.1016/j.agee.2012.04.011
  2. Ballinger, A., Nally, R.M., Lake, P.S., 2005. Immediate and longer-term effects of managed flooding on floodplain invertebrate assemblages in south-eastern Australia: generation and maintenance of a mosaic landscape, Fresh. Biol. 50, 1190-1205. https://doi.org/10.1111/j.1365-2427.2005.01391.x
  3. Brand, C., Miserendino, M.L., 2012. Life cycle phenology, secondary production, and trophic guilds of caddisfly species in a lake-outlet stream of Patagonia, Limnologica 42, 108-117. https://doi.org/10.1016/j.limno.2011.09.004
  4. Cope, N., and M. Winterbourn. 2004. Competitive interactions between two successful molluscan invaders of freshwaters: an experimental study, Aquat. Ecol. 38, 83-91. https://doi.org/10.1023/B:AECO.0000021018.20945.9d
  5. Elphick, C.S., Oring, L.W., 2003. Conservation implications of flooding rice fields on winter waterbird communities, Agric. Ecosyst. Environ. 94, 17-29. https://doi.org/10.1016/S0167-8809(02)00022-1
  6. Grant, I.F., Tirol, A.C., Aziz, T., Watanabe, I., 1983. Regulation of Invertebrate Grazers as a Means to Enhance Biomass and Nitrogen Fixation of Cyanophyceae in Wetland Rice Fields, Soil Sci. Soc. Am. J. 47, 669-675. https://doi.org/10.2136/sssaj1983.03615995004700040013x
  7. Guilpart, A., Roussel, J.-M., Aubin, J., Caquet, T., Marle, M., Le Bris, H., 2012. The use of benthic invertebrate community and water quality analyses to assess ecological consequences of fish farm effluents in rivers, Ecol. Indic. 23, 356-365. https://doi.org/10.1016/j.ecolind.2012.04.019
  8. Han, M.S., Y.E. Na, H.S. Bang, M.H. Kim, K.K. Kang, H.K. Hong, J. T. Lee, and B.G. Ko. 2008. Aquatic invertebrates in paddy ecosystem of Korea. p. 1-529. National Academy of Agricultural Science, Swon, Korea.
  9. Hesler, L.S., Grigarick, A.A., Oraze, M.J., Palrang, A.T., 1993. Arthropod Fauna of Conventional and Organic Rice Fields in California, J. Econ. Entomol. 86, 149-158. https://doi.org/10.1093/jee/86.1.149
  10. Huryn, A.D., 2009. Aquatic Insects-Ecology, Feeding, and Life History, In: Editor-in-Chief: Gene, E.L. (Ed.), Encyclopedia of Inland Waters, Academic Press, Oxford, pp. 132-143.
  11. Lawler, S.P., 2001. Rice fields as temproray wetlands: a review, Isr. J. Zool. 47, 513-528. https://doi.org/10.1560/X7K3-9JG8-MH2J-XGX1
  12. Ma, S.-m., Joachim, S., 2006. Review of History and Recent Development of Organic Farming Worldwide, Agric. Sci. China 5, 169-178. https://doi.org/10.1016/S1671-2927(06)60035-7
  13. Mesleard, F., Garnero, S., Beck, N., Rosecchi, E., 2005. Uselessness and indirect negative effects of an insecticide on rice field invertebrates, Compt. Rend. Biol. 328, 955-962. https://doi.org/10.1016/j.crvi.2005.09.003
  14. Metcalfe, J.L., 1989. Biological water quality assessment of running waters based on macroinvertebrate communities: History and present status in Europe, Environ. Poll. 60, 101-139. https://doi.org/10.1016/0269-7491(89)90223-6
  15. Paoletti, M.G., 1995. Biodiversity, traditional landscapes and agroecosystem management, Landsc. Urban Plann. 31, 117-128. https://doi.org/10.1016/0169-2046(94)01040-F
  16. Probst, M., Berenzen, N., Lentzen-Godding, A., Schulz, R., Liess, M., 2005. Linking land use variables and invertebrate taxon richness in small and medium-sized agricultural streams on a landscape level, Ecotoxicol. Environ. Saf. 60, 140-146. https://doi.org/10.1016/j.ecoenv.2004.04.003
  17. Roger, P.A., 1996. Biology and management of the floodwater ecosystem in rice fields, International Rice Research Institute, Los Banos, Philippines.
  18. Selfa, T., Jussaume, R.A., Winter, M., 2008. Envisioning agricultural sustainability from field to plate: Comparing producer and consumer attitudes and practices toward 'environmentally friendly' food and farming in Washington State, USA. J. Rural Stud. 24, 262-276. https://doi.org/10.1016/j.jrurstud.2007.09.001
  19. Simpson, I., Roger, P., Oficial, R., Grant, I., 1994. Effects of nitrogen fertilizer and pesticide management on floodwater ecology in a wetland ricefield, Biol. Fertil. Soils 17, 129-137. https://doi.org/10.1007/BF00337745
  20. Smeding, F.W., de Snoo, G.R., 2003. A concept of food-web structure in organic arable farming systems, Landsc. Urban Plann. 65, 219-236. https://doi.org/10.1016/S0169-2046(03)00058-6
  21. Smukler, S.M., Sánchez-Moreno, S., Fonte, S.J., Ferris, H., Klonsky, K., O'Geen, A.T., Scow, K.M., Steenwerth, K.L., Jackson, L.E., 2010. Biodiversity and multiple ecosystem functions in an organic farmscape, Agric. Ecosyst. Environ. 139, 80-97. https://doi.org/10.1016/j.agee.2010.07.004
  22. Taft, O.W., Haig, S.M., 2005. The value of agricultural wetlands as invertebrate resources for wintering shorebirds, Agric. Ecosyst. Environ. 110, 249-256. https://doi.org/10.1016/j.agee.2005.04.012
  23. Taylor, D.W. 2003. Introdution to physidae (Gastropoda: Hygrophila), Biology, classification, morphology. Rev. Biol. Trop. 51: 1-299.
  24. Wilson, A.L., Ryder, D.S., Watts, R.J., Stevens, M.M., 2005. Stable isotope analysis of aquatic invertebrate communities in irrigated rice fields cultivated under different management regimes, Aquat. Ecol. 39, 189-200. https://doi.org/10.1007/s10452-004-7085-0
  25. Yoon, I.B., S.J. Aw, and J.I. Kim. 1989. Study on the structures of aquatic insect communities at five wetlands in Gyungsang-Namdo, Korea, Korean J. Environ. bio. 7, 19-32.
  26. Yoon, I.B. 1995. Aquatic Insects of Korea, Jeonghangsa, Seoul.

Cited by

  1. Benthic macroinvertebrate biodiversity improved with irrigation ponds linked to a rice paddy field vol.46, pp.1, 2016, https://doi.org/10.1111/1748-5967.12150
  2. The Development of a Sampling Instrument for Aquatic Organisms in Rice Paddy Fields: Submerged Funnel Traps with Attractants vol.35, pp.4, 2017, https://doi.org/10.11626/KJEB.2017.35.4.640
  3. Regional and Temporal Characteristics of Aquatic Organism Communities in Rice Paddy Fields, using Submerged Funnel Trap vol.36, pp.2, 2018, https://doi.org/10.11626/KJEB.2018.36.2.099
  4. Monthly Change of the Length-weight Relationship of the Loach (Misgurnus anguillicaudatus) Population in Paddy Fields by Farming Practices vol.36, pp.1, 2018, https://doi.org/10.11626/KJEB.2018.36.1.001
  5. Change in Biodiversity and Community Structures in Agricultural Fields depending on Different Farming Methods vol.26, pp.4, 2018, https://doi.org/10.11625/KJOA.2018.26.4.687
  6. Flora and Restoration Plan of Hanon Paddy Fields Made in Maar Crater, Jeju Island, South Korea vol.36, pp.4, 2018, https://doi.org/10.11626/KJEB.2018.36.4.439