References
- Adeniji, A.A. and Jimoh, A. 2007. Effects of replacing maize with enzyme-supplemented bovine rumen content in the diets of pullet chicks. International Journal of Poultry Science. 6:814-817. https://doi.org/10.3923/ijps.2007.814.817
- Arriola, K.G., Kim, S.C., Staples, C.R. and Adesogan, A.T. 2011. Effect of fibrolytic enzyme application to low- and high-concentrate diets on the performance of lactating dairy cattle. Journal of Dairy Science. 94:832-841. https://doi.org/10.3168/jds.2010-3424
- Bhatta, R., Vaithiyanathan, S., Shinde, A.K. and Jakhmola, R.C. 2005. Effect of feeding complete feed block containing Prosopis cineraria leaves and polyethylene glycol (PEG)-6000 on nutrient intake, its utilization, rumen fermentation pattern and rumen enzyme profile in kids. Journal of the Science of Food and Agriculture. 85:1788-1794. https://doi.org/10.1002/jsfa.2111
- Box, G.E.P. and Behnken, D.W. 1960. Some new three level designs for the study of quantitative variables. Technometrics. 2:455-475. https://doi.org/10.1080/00401706.1960.10489912
- Bryant, M.P. and Doetsch, R.N. 1955. Factors necessary for the growth of Bacteroides succinogenes in the volatile acid fraction of rumen fluid. Journal of Dairy Science. 38:340-350. https://doi.org/10.3168/jds.S0022-0302(55)94984-5
- Carpenter, J.F., Prestrelski, S.J. and Arakawa, T. 1993. Separation of freezing- and drying-induced denaturation of lyophilized proteins using stress-specific stabilization: I. Enzyme activity and calorimetric studies. Archives of Biochemistry and Biophysics. 303:456-464. https://doi.org/10.1006/abbi.1993.1309
- Forsberg, C.W. and Cheng, K.J. 1992. Molecular strategies to optimise forage and cereal digestion by ruminants, In: Bills, D.D. and Kung, S.D. (Eds.) Biotechnology and Nutrition, Butterworth Heinmann Stoneham, UK. pp. 107-147.
- Gencoglu, H., Shaver, R.D., Steinberg, W., Ensink, J., Ferraretto, L.F., Bertics, S.J., Lopes, J.C. and Akins, M.S. 2010. Effect of feeding a reduced-starch diet with or without amylase addition on lactation performance in dairy cows. Journal of Dairy Science. 93:723-732. https://doi.org/10.3168/jds.2009-2673
- Holtshausen, L., Chung, Y.H., Gerardo-Cuervo, H., Oba, M. and Beauchemin, K.A. 2011. Improved milk production efficiency in early lactation dairy cattle with dietary addition of a developmental fibrolytic enzyme additive. Journal of Dairy Science. 94:899-907. https://doi.org/10.3168/jds.2010-3573
- Jovanovic, M. and Cuperlovic, M. 1977. Nutritive value of rumen contents for monogastric animals. Animal Feed Science and Technology. 2:351-360. https://doi.org/10.1016/0377-8401(77)90007-4
- Kim, B., Chung, K. and Shin, H. 2000. Study on the development of Aspergillus oryzae culture with rumen contents from slaughterhouse. Journal of Animal Science and Technology (Kor.). 42:85-92.
- Klingerman, C.M., Hu, W., McDonell, E.E., DerBedrosian, M.C. and Kung, L. 2009. An evaluation of exogenous enzymes with amylolytic activity for dairy cows. Journal of Dairy Science. 92: 1050-1059. https://doi.org/10.3168/jds.2008-1339
- Minitab Inc. 2010. Meet Minitab 16. State College, PA, Minitab Inc. (www.minitab.com).
- Rincon, F.G.R., Bermudez-Hurtado, R.M., Estrada-Angulo, A., Juarez-Reyes, A.S. and Pujol-Manriquez, C. 2010. Dried ruminal contents as a substitute for alfalfa hay in growing-finishing diets for feedlot cattle. Journal of Animal and Veterinary Advances. 9:1526-1530. https://doi.org/10.3923/javaa.2010.1526.1530
- Ruf, E.W., Hale, W.H. and Burroughs, W. 1953. Observations upon an unidentified factor in feedstuffs stimulatory to cellulose digestion in the rumen and improved liveweight gains in lambs. Journal of Animal Science. 12:731-739. https://doi.org/10.2527/jas1953.124731x
- Salinas-Chavira, J., Dominguez-Munoz, M., Bernal-Lorenzo, R., Garcia-Castillo, R.F. and Arzola-Alvarez, C. 2007. Growth performance and carcass characteristics of feedlot lambs fed diets with pig manure and rumen contents. Journal of Animal and Veterinary Advances. 6:505-508.
- Santra, A., Karim, S.A. and Chaturvedi, O.H. 2007. Rumen enzyme profile and fermentation characteristics in sheep as affected by treatment with sodium lauryl sulfate as defaunating agent and presence of ciliate protozoa. Small Ruminant Research. 67:126- 137. https://doi.org/10.1016/j.smallrumres.2005.08.028
- Schingoethe, D.J., Stegeman, G.A. and Treacher, R.J. 1999. Response of lactating dairy cows to a cellulase and xylanase enzyme mixture applied to forages at the time of feeding. Journal of Dairy Science. 82:996-1003. https://doi.org/10.3168/jds.S0022-0302(99)75319-1
- Shrestha, K., Shrestha, P., Adetutu, E.M., Walsh, K.B., Harrower, K.M., Ball, A.S. and Midmore, D.J. 2011. Changes in microbial and nutrient composition associated with rumen content compost incubation. Bioresource Technology. 102:3848-3854. https://doi.org/10.1016/j.biortech.2010.11.087
- Son, H.J., Song, J.Y., Choi, N.J., Ha, J.K. and Chang, J.S. 2006. Comparison of the influences of carbon substrates on the fibrolytic activities of Neocallimastix sp. NLRI-3. Journal of Animal Science and Technology (Kor.). 48:415-424. https://doi.org/10.5187/JAST.2006.48.3.415
- Titi, H. and Lubbadeh, W.F. 2004. Effect of feeding cellulase enzyme on productive responses of pregnant and lactating ewes and goats. Small Ruminant Research. 52:137-143. https://doi.org/10.1016/S0921-4488(03)00254-2
- Weiss, W.P., Steinberg, W. and Engstrom, M.A. 2011. Milk production and nutrient digestibility by dairy cows when fed exogenous amylase with coarsely ground dry corn. Journal of Dairy Science. 94:2492-2499. https://doi.org/10.3168/jds.2010-3766
- Yang, W.Z., Beauchemin, K.A. and Rode, L.M. 1999. Effectsof an enzyme feed additive on extent of digestion and milk production of lactating dairy cows. Journal of Dairy Science. 82:391-403. https://doi.org/10.3168/jds.S0022-0302(99)75245-8