DOI QR코드

DOI QR Code

Reactor Sizing for Hydrogen Production from Ethane over Ni Catalyst

니켈 촉매 상에서 에탄으로부터 수소생산을 위한 반응기 사이징

  • Seong, Minjun (Department of Chemical Engineering, Kongju National University) ;
  • Lee, Kyungeun (Department of Chemical Engineering, Kongju National University) ;
  • Cho, Jung-Ho (Department of Chemical Engineering, Kongju National University) ;
  • Lee, Young-Chul (R&D Division Korea Gas Co.) ;
  • Jeon, Jong-Ki (Department of Chemical Engineering, Kongju National University)
  • Received : 2013.01.23
  • Accepted : 2013.03.13
  • Published : 2013.03.31

Abstract

In this study, kinetics data was obtained for steam reforming reaction of ethane over the nickel catalyst. The variables of steam reforming reaction were reaction temperature, partial pressure of ethane, and mole ratio of steam and ethane. Parameters for the power rate law kinetic model and the Langmuir-Hinshelwood model were obtained from the kinetic data. Also, sizing of steam reforming reactor was performed by using PRO/II simulator. For the steam reforming reaction of ethane, Langmuir-Hinshelwood model determining the reaction rate by the surface reaction was better suited than a simple power rate law kinetic model. On water-gas-shift reaction, power rate law kinetic model was well fitted to the kinetic data. Reactor size can be calculated for production of hydrogen through PRO/II simulation.

니켈 촉매 상에서 에탄의 수증기 개질 반응과 수성가스 전환반응 반응에 대한 반응속도 데이터를 얻기 위하여 반응온도와 반응물의 분압을 변화시키면서 반응 실험을 수행하였다. 반응속도 데이터를 사용하여 거듭제곱 속도식 모델(power law kinetic model)과 랭미어-힌쉘우드 모델(Langmuir-Hinshelwood model)의 매개변수를 구하였다. 또한 반응 속도 모델식을 적용하여 PRO/II를 이용한 공정 모사를 통해서 에탄의 수증기 개질 반응기 사이징(sizing)을 수행하였다. 에탄을 반응물로 하여 수증기 개질 반응을 수행한 결과, 단순한 거듭제곱 속도식 모델보다 표면반응에 의하여 반응속도가 결정되는 랭미어-힌쉘우드 모델이 보다 적합하였고, 수성가스 전환반응에 대한 반응속도식은 거듭제곱 속도식 모델이 적합함을 보였다. PRO/II 시뮬레이션을 통해서 수소 생산량에 필요한 반응기의 크기를 결정할 수 있었다.

Keywords

References

  1. Hoang, D. L., Chan, S. H., and Ding, O. L., "Kinetic and Modelling Study of Methane Steam Reforming over Sulfide Nickel Catalyst on a Gamma Alumina Support," Chem. Eng. J., 112(1-3), 1-11 (2005). https://doi.org/10.1016/j.cej.2005.06.004
  2. Schadel, B. T., Duisberg, M., and Deutschmann, O., "Steam Reforming of Methane, Ethane, Propane, Butane, and Natural Gas over a Rhodium-based Catalyst," Catal. Today, 142(1-2), 42-51 (2009). https://doi.org/10.1016/j.cattod.2009.01.008
  3. Basini, L., Aasberg-Petersen, K., Guarinoni, A., and Ostberg, M., "Catalytic Partial Oxidation of Natural Gas at Elevated Pressure and Low Residence Time," Catal. Today, 64(1-2), 9-20 (2001). https://doi.org/10.1016/S0920-5861(00)00504-6
  4. Qi, A., Wang, S., Ni, C., and Wu, D., "Autothermal Reforming of Gasoline on Rh-Based Monolithic Catalysts," Int. J. Hydrogen Energy, 32(8), 981-991 (2007). https://doi.org/10.1016/j.ijhydene.2006.06.072
  5. Arbag, H., Yasyerli, S., Yasyerli, N., and Dogu, C., "Activity and Stability Enhancement of Ni-MCM-41 Catalysts by Rh Incorporation for Hydrogen from Dry Reforming of Methane," Int. J. Hydrogen Energy, 35(6), 2296-2304 (2010). https://doi.org/10.1016/j.ijhydene.2009.12.109
  6. Aboudheir, A., Akande, A., Idem, R., and Dalai, A., "Experimental Studies and Comprehensive Reactor Modeling of Hydrogen Production by the Catalytic Reforming of Crude Ethanol in a Packed Bed Tubular Reactor over a Ni/$Al_2O_3$ Catalyst," Int. J. Hydrogen Energy, 31(6), 752-761 (2006). https://doi.org/10.1016/j.ijhydene.2005.06.020
  7. Heinzel, A., Vogel, B., and Hubner, P., "Reforming of Natural Gas-Hydrogen Generation for Small Scale Stationary Fuel Cell Systems," J. Power Sources, 105(2), 202-207 (2002). https://doi.org/10.1016/S0378-7753(01)00940-5
  8. Zhang, Q., Li, X., Fujimoto, and K., Asami, K., "Hydrogen Production by Partial Oxidation and Reforming of DME," Appl. Catal. A: Gen., 288(1-2), 169-174 (2005). https://doi.org/10.1016/j.apcata.2005.04.038
  9. Lee, W., "Study of Reaction Mechanism in Pre-Reforming for MCFC Metals Removal," Master Dissertation, Kongju National University, Gongju, 2011.
  10. Jeong, J. H., Lee, J. W., Seo, D. J., Seo, Y. T., Yoon, W. L., Lee, D. K., and Kim, D. H., "Ru-Doped Ni Catalysts Effective for the Steam Reforming of Methane without the Pre-reduction Treatment with $H_2$," Appl. Catal. A: Gen., 302(2), 151-156 (2006). https://doi.org/10.1016/j.apcata.2005.12.007
  11. Profeti, L. P. R., Ticianelli, E. A., and Assaf, E. M., "Co/$Al_2O_3$ Catalysts Promoted with Noble Metals for Production of Hydrogen by Methane Steam Reforming," Fuel, 87(10-11), 2076-2081 (2008). https://doi.org/10.1016/j.fuel.2007.10.015
  12. Hou, K., and Hughes, R., "The Kinetics of Methane Steam Reforming over a Ni/${\alpha}-Al_2O_3$ Catalyst," Chem. Eng. J., 82 (1-3), 311-328 (2001). https://doi.org/10.1016/S1385-8947(00)00367-3
  13. Shin, M., Seong, M., Jang, J., Lee, K., Cho, J. H., Lee, Y. C., and Jeon, J. K., "Reaction Kinetics for Steam Reforming of Ethane over Ru Catalyst and Reactor Sizing," Appl. Chem. Eng., 23(2), 204-209 (2012).
  14. Chon, H. and Seo, G., Introduction of Catalysis, 4th edition, Hanrimwon, Seoul, 2002, pp. 204-206.
  15. Huang, X., Reimert, R., "Kinetics of Steam Reforming of Ethane on Ni/YSZ(Yttria-Stabilised Zirconia) Catalyst," Fuel, http://dx.doi.org/10.1016/j.fuel.2012.09.081.
  16. Satterfield, C. N., Heterogeneous Catalysis in Practice, McGraw-Hill, Cambridge, 1980, pp. 58-64.
  17. Choi, Y. T., and Stenger, H. G., "Water Gas Shift Reaction Kinetics and Reactor Modeling for Fuel Cell Grade Hydrogen," J. Power Sources, 124(2), 432-439 (2003). https://doi.org/10.1016/S0378-7753(03)00614-1

Cited by

  1. 천연가스 조성에 따른 수소 생산 시에 발생하는 이산화탄소 배출량 산출에 대한 연구 vol.30, pp.6, 2019, https://doi.org/10.7316/khnes.2019.30.6.485
  2. Study on Internal Phenomena of Solid Oxide Fuel Cells Using Liquefied Natural Gas as Fuel vol.168, pp.12, 2021, https://doi.org/10.1149/1945-7111/ac4370