DOI QR코드

DOI QR Code

Effect of Silk in Silk/PLGA Hybrid Films on Attachment and Proliferation of Human Aortic Endothelial Cells

실크/PLGA 하이브리드 필름에서 실크가 인간 대동맥 내피세포의 부착과 증식에 미치는 효과

  • Lee, Jihye (Dept. of BIN Fusion Tech., Polymer Fusion Research Center & Dept. of Polymer Nano Sci. Tech., Chonbuk National University) ;
  • Lee, Sojin (Dept. of BIN Fusion Tech., Polymer Fusion Research Center & Dept. of Polymer Nano Sci. Tech., Chonbuk National University) ;
  • Kim, Seulji (Dept. of BIN Fusion Tech., Polymer Fusion Research Center & Dept. of Polymer Nano Sci. Tech., Chonbuk National University) ;
  • Kim, Kyounghee (Dept. of BIN Fusion Tech., Polymer Fusion Research Center & Dept. of Polymer Nano Sci. Tech., Chonbuk National University) ;
  • Kim, Younglae (Dept. of BIN Fusion Tech., Polymer Fusion Research Center & Dept. of Polymer Nano Sci. Tech., Chonbuk National University) ;
  • Song, Jeongeun (Dept. of BIN Fusion Tech., Polymer Fusion Research Center & Dept. of Polymer Nano Sci. Tech., Chonbuk National University) ;
  • Lee, Dongwon (Dept. of BIN Fusion Tech., Polymer Fusion Research Center & Dept. of Polymer Nano Sci. Tech., Chonbuk National University) ;
  • Khang, Gilson (Dept. of BIN Fusion Tech., Polymer Fusion Research Center & Dept. of Polymer Nano Sci. Tech., Chonbuk National University)
  • 이지혜 (전북대학교 BIN 융합공학과, 고분자 융합소재 연구센터, 고분자.나노공학과) ;
  • 이소진 (전북대학교 BIN 융합공학과, 고분자 융합소재 연구센터, 고분자.나노공학과) ;
  • 김슬지 (전북대학교 BIN 융합공학과, 고분자 융합소재 연구센터, 고분자.나노공학과) ;
  • 김경희 (전북대학교 BIN 융합공학과, 고분자 융합소재 연구센터, 고분자.나노공학과) ;
  • 김영래 (전북대학교 BIN 융합공학과, 고분자 융합소재 연구센터, 고분자.나노공학과) ;
  • 송정은 (전북대학교 BIN 융합공학과, 고분자 융합소재 연구센터, 고분자.나노공학과) ;
  • 이동원 (전북대학교 BIN 융합공학과, 고분자 융합소재 연구센터, 고분자.나노공학과) ;
  • 강길선 (전북대학교 BIN 융합공학과, 고분자 융합소재 연구센터, 고분자.나노공학과)
  • Received : 2012.07.06
  • Accepted : 2012.11.05
  • Published : 2013.03.25

Abstract

The vascular endothelial cells are the inner layers of blood vessels. It regulates the function of blood vessels and proliferation of vascular smooth muscle cells. Poly(lactide-co-glycolic acid) (PLGA) is a biodegradable synthetic polymer with a well-controlled degradation rate and an acceptable mechanical strength. It can be easily fabricated into many shapes. Silk consists of 18 amino acids. It found important for attaching cells cultured in vitro, and maintaining cell functions. In this study, we fabricated silk/PLGA biomaterial hybrid films of 0, 10, 20, 40 and 80 wt% silk. We performed MTT, SEM, ELISA, and immunocytochemistry analyses. We confirmed the adhesion and the proliferation of HAECs on silk/PLGA according to the content of silk, and 40 wt% silk/PLGA hybrid films have superior adhesion and proliferation properties. These results demonstrate that silk/PLGA hybrid films provide suitable surfaces for HAECs, and there is the effect of silk on cell growth and proliferation.

혈관내피세포는 혈관 안쪽을 덮고 있는 편평한 세포층으로, 혈관의 기능과 혈관평활근세포의 증식을 조절한다. 폴리락타이드글리콜라이드 공중합체(PLGA)는 물성이 좋고 분해속도를 조절하기 좋은 생분해성 합성고분자이며, 여러 형태로 제조하기 쉽다. 누에에서 얻은 실크 피브로인은 18가지 아미노산으로 구성되어 있고 세포의 부착과 세포 기능 유지에 중요하며 화장품, 의료분야 등 다양한 분야에서 응용되고 있다. 본 연구에서는 용매 증발법을 이용하여 0, 10, 20, 40 및 80 wt%의 실크를 이용하여 실크/PLGA 하이브리드 필름을 만들었으며, MTT, SEM, ELISA, 면역세포화학염색법을 실시하였다. 실크/PLGA 하이브리드 필름에서 실크 함량에 따른 인간 대동맥 내피세포의 부착과 증식을 측정한 결과, 40 wt%의 실크/PLGA 하이브리드 필름에서 세포의 부착과 증식이 가장 높았으며, 이런 결과들은 실크가 세포의 증식에 좋은 영향을 미치고 실크/PLGA 하이브리드 필름의 표면이 인간 대동맥 내피세포의 성장에 알맞은 환경이라는 것을 확인할 수 있었다.

Keywords

References

  1. H. N. Park, J. B. Lee, and I. K. Kwon, Int. J. Tissue Reg., 1, 10 (2010).
  2. R. Langer and D. A. Tirrell, Nature, 428, 487 (2004). https://doi.org/10.1038/nature02388
  3. J. H. Lee, S. J. Park, H. J. Chun, and C. H. Kim, Int. J. Tissue Reg., 1, 1 (2010).
  4. S. Petit-Zeman, Nature Biotech., 19, 201 (2001). https://doi.org/10.1038/85619
  5. A. Atala, J. Endourol., 14, 49 (2000). https://doi.org/10.1089/end.2000.14.49
  6. N. Zhang, H. Yan, and X. Wen, Brain Res. Reviews, 49, 48 (2005). https://doi.org/10.1016/j.brainresrev.2004.11.002
  7. G. Khang, E. K. Jeon, J. M. Rhee, I. Lee, S. J. Lee, and H. B. Lee, Macromol. Res., 11, 334 (2003). https://doi.org/10.1007/BF03218373
  8. X. S. Wu, in Encyclopedic Handbook of Biomaterials and Bioengineering, Part A: Materials, D. L. Wise, D. J. Trantolo, D. E. Altobelli, M. J. Yaszemski, J. D. Gresser and E. R. Schwartz, Editors, Marcel Dekker, New York, Vol 1, p 1015 (1995).
  9. E. I. Shishatskaya, T. G. Volova, A. P. Puzyr, O. A. Mogilnaya, and S. N. Efremov, J. Mater. Sci : Mater. Med., 15, 719 (2004). https://doi.org/10.1023/B:JMSM.0000030215.49991.0d
  10. T. Volova, E. Shishatskaya, V. Sevastianov, S. Efremov, and O. Mogilnaya, Biochem. Eng. J., 16, 125 (2003). https://doi.org/10.1016/S1369-703X(03)00038-X
  11. Y. Iwasaki, S. Sawada, N. Nakabayashi, G. Khang, H. B. Lee, and K. Ishihara, Biomaterials, 20, 2185 (1999). https://doi.org/10.1016/S0142-9612(99)00123-4
  12. N. Minoura, S. Aiba, Y. Gotoh, M. Tsukada, and Y. Imai, J. Biomed. Mater. Res., 29, 1215 (1995). https://doi.org/10.1002/jbm.820291008
  13. G. Altman, R. L. H. Horan, J. Moreau, I. Martin, J. Richmond, and D. L. Kaplan, Biomaterials, 23, 4131 (2002). https://doi.org/10.1016/S0142-9612(02)00156-4
  14. D. H. Reneker and I. Chun, Nanotechnology, 7, 216 (1996). https://doi.org/10.1088/0957-4484/7/3/009
  15. O. J. Lee, J. M. Lee, H. J. Jin, and C. H. Park, Int. J. Tissue Reg., 1, 68 (2010).
  16. N. Minoura, M. Tsukada, and M. Nagura, Polymer, 31, 265 (1990). https://doi.org/10.1016/0032-3861(90)90117-H
  17. N. Minoura, S. Aiba, M. Higuchi, Y. Gotoh, M. Tsukada, and Y. Imai, Biochem. Biophys. Res. Commun., 208, 511 (1995). https://doi.org/10.1006/bbrc.1995.1368
  18. M. Santin, A. Motta, G. Freddi, and M. Cannas, J. Biomed. Mater. Res., 46, 382 (1999). https://doi.org/10.1002/(SICI)1097-4636(19990905)46:3<382::AID-JBM11>3.0.CO;2-R
  19. H. Y. Kweon and C. S. Cho, Int. J. Indust. Entomol., 3, 1 (2001).
  20. B. Panilaitis, G. H. Altman, J. Chen, H. J. Jang, V. Karageorgiou, and D. L. Kaplan, Biomaterials, 24, 3079 (2003). https://doi.org/10.1016/S0142-9612(03)00158-3
  21. B. M. Egan, G. Lu, and E. L. Greene, PLEFA, 60, 411 (1999).
  22. Z. J. Bosnjak, Anesthesiology, 79, 1392 (1993). https://doi.org/10.1097/00000542-199312000-00031
  23. R. F. Furchgott, Circ. Res., 53, 557 (1983). https://doi.org/10.1161/01.RES.53.5.557
  24. V. J. Dzau, Am. J. Med., 77, 31 (1984). https://doi.org/10.1016/S0002-9343(84)80035-2
  25. H. O. Steinberg, M. Tarshoby, R. Monestel, G. Hook, J. Cronin, A. Johnson, B. Bayazeed, and A. D. Baron, J. Clin. Invest., 100, 1230 (1997). https://doi.org/10.1172/JCI119636
  26. H. L. Kim, H. N. Yoo, H. J. Park, Y. G. Kim, D. W. Lee, Y. S. Kang, and G. Khang, Polymer(Korea), 35, 7 (2011).
  27. H. Liu, H. Fan, Y. Wang, S. L. Toh, and J. Goh, Biomaterials, 29, 662 (2008). https://doi.org/10.1016/j.biomaterials.2007.10.035
  28. J. K. Park, NICE, 21, 613 (2003).
  29. D. J. Mooney, L. Cima, R. Langer, L. K. Hansen, D. E. Ingber, and J. P. Vacanti. Mater. Res. Soc. Symp. Proc., 252, 345 (1992).
  30. A. G. Mikos and J. S. Temenoff, Elec. J. Biotech., 3, 1 (2000).
  31. E. H. Jo, S. J. Kim, S. J. Cho, G. Y. Lee, O. Y. Kim, E. Y. Lee, W. H. Cho, D. W. Lee, and G. Khang, Polymer(Korea), 35, 289 (2011).
  32. J. C. Keller, G. B. Schneider, C. M. Stanford, and B. Kellogg, Implant Dentistry, 12, 175 (2003). https://doi.org/10.1097/01.ID.0000058309.77613.87
  33. P. A. Baeuerle and T. Henkel, Annu. Rev. Immunol., 12, 141 (1994). https://doi.org/10.1146/annurev.iy.12.040194.001041
  34. N. Y. Kim, H. J. Kim, J. H. Lee, E. K. Lee, O. H. Kang, D. Y. Kwon, H. S. So, K. N. Lee, and M. S. Chong, Korean J. Oriental Physiology & Pathology, 25, 227 (2011).
  35. M. K. Sah and K. Pramanik, IJESD, 1, 404 (2010).

Cited by

  1. Silk fibroin film as an efficient carrier for corneal endothelial cells regeneration vol.23, pp.2, 2015, https://doi.org/10.1007/s13233-015-3027-z
  2. Fabrication and characterization of hydrocolloid dressing with silk fibroin nanoparticles for wound healing vol.13, pp.3, 2016, https://doi.org/10.1007/s13770-016-9058-5