DOI QR코드

DOI QR Code

The Effect of the Crystalline Phase of Zirconia for the Dehydration of Iso-propanol

이소프로판올의 탈수반응에서 지르코니아 촉매의 결정상에 따른 영향

  • Sim, Hye-In (Department of Chemical Engineering, Chungbuk National University) ;
  • Park, Jung-Hyun (Department of Chemical Engineering, Chungbuk National University) ;
  • Cho, Jun Hee (Department of Chemical Engineering, Chungbuk National University) ;
  • Ahn, Ji-Hye (Department of Chemical Engineering, Chungbuk National University) ;
  • Choi, Min-Seok (Department of Chemical Engineering, Chungbuk National University) ;
  • Shin, Chae-Ho (Department of Chemical Engineering, Chungbuk National University)
  • Received : 2012.12.03
  • Accepted : 2013.01.15
  • Published : 2013.04.01

Abstract

Zirconium hydroxide was synthesized by varying the aging time of the zirconyl chloride octahydrate at $100^{\circ}C$ in aqueous solution and the resulting hydroxides were calcined at $700^{\circ}C$ for 6 h to obtain the crystalline $ZrO_2$. The materials used in this study were characterized by differential thermal analysis (DTA), X-ray diffraction (XRD), $N_2$-sorption, transmission electron microscopy (TEM), $NH_3$ temperature-programmed desorption ($NH_3$-TPD), $CO_2$-TPD and iso-propanol TPD analyses to correlate with catalytic activity for the dehydration of iso-propanol. The pure tetragonal $ZrO_2$ phase was obtained after 24 h aging of zirconium hydroxide and successive calcination at $700^{\circ}C$. The increase of aging time showed the production of smaller particle size $ZrO_2$ resulting that the higher specific surface area and total pore volume. $NH_3$-TPD results revealed that the relative acidity of the catalysts increased along with the increase of aging time. On the other hand, the results of $CO_2$-TPD showed the reverse trend of $NH_3$-TPD results. The best catalytic activity for the dehydration of iso-propanol to propylene was shown over $ZrO_2$ catalyst aged for 168 h which had the highest $S_{BET}$ ($178\;m^2\;g^{-1}$). The catalytic activity could be correlated with high surface area, relative acidity and easy desorption of iso-propanol.

염화 지르코니움산화물을 수용액상하에 $100^{\circ}C$에서 다양한 숙성 시간 동안 환류시켜 지르코니움 수화물을 제조하였고 결정성 $ZrO_2$를 얻기 위하여 $700^{\circ}C$에서 6시간 소성하였다. 제조된 물질의 특성분석을 위하여 시차 열분석, X-선회절 분석, 비표면적과 세공분포 측정, 투과 전자 현미경 분석, 암모니아 승온 탈착 분석, 이산화탄소 승온 탈착 분석 그리고 이소프로판올 승온 탈착 분석을 수행하였다. 24시간 숙성시키고 $700^{\circ}C$에서 소성 후 순수한 정방형계 지르코니아만을 얻을 수 있었다. 숙성시간 증가는 상대적으로 더 작은 입자, 고비표면적 및 고 기공부피의 지르코니아를 제조할 수 있었다. 지르코니아의 숙성 시간이 길어질수록 흡착된 암모니아의 양이 상대적으로 증가하는 경향을 보였고 상대적으로 흡착된 이산화탄소의 양은 감소하였다. 지르코니아 촉매상에서 프로필렌을 생성하는 이소프로판올 탈수 반응에서 촉매 활성은 168시간 동안 숙성하여 제조한 지르코니아 촉매가 가장 좋은 활성이 나타냈다. 이러한 촉매활성은 촉매의 비표면적, 산점, 상대적으로 용이한 프로판올의 탈착과 연관시킬 수 있었다.

Keywords

References

  1. Rodriguez, J. A. and Hrbek, J., "Inverse Oxide/metal Catalysts: A Versatile Approach for Activity Tests and Mechanistic Studies," Surf. Sci., 604, 241-244(2010). https://doi.org/10.1016/j.susc.2009.11.038
  2. Chuah, G. K., Jaenicke, S. and Pong, B. K., "The Preparation of High-surface-area Zirconia; II. Influence of Precipitating Agent and Digestion on the Morphology and Microstructure of Hydrous Zirconia," J. Catal., 175, 80-92(1998). https://doi.org/10.1006/jcat.1998.1980
  3. Stichert, W. and Schuth, F., "Influence of Crystallite Size on the Properties of Zirconia," Chem, Mater., 10, 2020-2026(1998). https://doi.org/10.1021/cm980705o
  4. Chuah, G. K., Jaenicke, S., Cheong, S. A. and Chan, K. S., "The Influence of Preparation Conditions on the Surface Area of Zirconia," Appl. Catal. A: Gen., 145, 267-284(1996). https://doi.org/10.1016/0926-860X(96)00152-4
  5. Parida, K. M. and Pattnayak, P. K., "Studies on ${PO_4}^{3-}/ZrO_2$; I. Effect of $H_3PO_4$ on Textural and Acidic Properties of $ZrO_2$," J. Colloid Interface Sci., 182, 381-387(1996). https://doi.org/10.1006/jcis.1996.0477
  6. Chuah, G. K. and Jaenicke, S., "The Preparation of High Surface Area Zirconia - Influence of Precipitating Agent and Digestion," Appl. Catal. A: Gen., 163, 261-273(1997). https://doi.org/10.1016/S0926-860X(97)00103-8
  7. Turek, W. and Krowiak, A., "Evaluation of Oxide Catalysts'properties Based on Isopropyl Alcohol Conversion," Appl. Catal. A: Gen., 417-418, 102-110(2012). https://doi.org/10.1016/j.apcata.2011.12.030
  8. Jung, K. T. and Bell, A. T., "The Effect of Synthesis and Pretreatment Conditions on the Bulk Structure and Surface Properties of Zirconia," J. Mol. Catal. A-Chem., 163, 27-42(2000). https://doi.org/10.1016/S1381-1169(00)00397-6
  9. Aguila, G., Jimenez, J., Guerrero, S., Gracia, F., Chornik, B., Quinteros, S. and Araya, P., "A Novel Method for Preparing High Surface Area Copper Zirconia Catalysts Influence of the Preparation Variables," Appl. Catal. A: Gen., 360, 98-105(2009). https://doi.org/10.1016/j.apcata.2009.03.014
  10. Chuah, G. K., "An Investigation Into the Preparation of High Surface Area Zirconia," Catal. Today, 49, 131-139(1999). https://doi.org/10.1016/S0920-5861(98)00417-9
  11. Liu, Z., Ji, W., Dong, L. and Chen, Y., "Effect of Supported $Na^+\;^ions$ on the Texture Properties of $ZrO_2$," J. Solid State Chem., 138, 41-46(1998). https://doi.org/10.1006/jssc.1998.7752
  12. Rezaei, M., Alavi, S. M., Sahebdelfar, S. and Yan, Z. F., "Tetragonal Nanocrystalline Zirconia Powder with High Surface Area and Mesoporous Structure," Powder Technol., 168, 59-63(2006). https://doi.org/10.1016/j.powtec.2006.07.008
  13. Stefanic, G. and Music, S., "Factors Influencing the Stability of Low Temperature Tetragonal $ZrO_2$," Croat. Chem. Acta., 75(3), 727-767(2002).
  14. Gervasini, A. and Auroux, A., "Acidity and Basicity of Metal Oxide Surfaces; II. Determination by Catalytic Decomposition of iso-propanol," J. Catal., 131, 190-198(1991). https://doi.org/10.1016/0021-9517(91)90335-2
  15. Ai, M., "The activity of $WO_3$-Based Mixed-Oxide Catalysts; 1. Acidic Properties of $WO_3$-Based Catalysts and Correlation with Catalytic Activity," J. Catal., 49, 305-312(1979).
  16. Yamaguchi, O., Shirai, M. and Yoshinaka, M., "Formation and Transformation of Cubic $ZrO_2$ Solid Solutions in the System $ZrO_2-Al_2O_3$," J. Am. Cream. Soc., 71(12), c-510-c-512(1988).
  17. Balmer, M. L., Lange, F. F. and Levi, C. G., "Metastable Phase Selection and Partitioning for $Zr_{(1-x)}Al_xO_{(2-x/2)}$ Materials Synthesized With Liquid Precursors," J. Am. Cream. Soc., 77(8), 2069-75(1994). https://doi.org/10.1111/j.1151-2916.1994.tb07098.x
  18. Sakthivel, R., Prescott, H. A., Deutsch, J., Lieske, H. and Kemnitz, E., "Synthesis, Characterization, and Catalytic Activity of $SO_4/Zr_{1-x}Sn_xO_2$," Appl. Catal. A: Gen., 253, 237-247(2003). https://doi.org/10.1016/S0926-860X(03)00523-4
  19. Yue, Y., Zhao, X., Hua, W. and Gao, Z., "Nanosized Titania and Zirconia as Catalysts for Hydrolysis of Carbon Disulfide," Appl. Catal., B: Environ., 46, 561-572(2003). https://doi.org/10.1016/S0926-3373(03)00319-9

Cited by

  1. Preparation and Characterization of Al-Zr Mixed Oxide Catalysts vol.22, pp.1, 2016, https://doi.org/10.7464/ksct.2016.22.1.009
  2. 고비표면적 지르코니움 산화물의 제조 및 특성 분석: pH 영향 vol.57, pp.1, 2013, https://doi.org/10.9713/kcer.2019.57.1.133
  3. Phase transformation of ZrO2 by Si incorporation and catalytic activity for isopropyl alcohol dehydration and dehydrogenation vol.428, pp.None, 2013, https://doi.org/10.1016/j.cej.2021.131766